Show simple item record

Validation of Ionospheric Specifications During Geomagnetic Storms: TEC and foF2 During the 2013 March Storm Event-II

dc.contributor.authorShim, J. S.
dc.contributor.authorSong, I.-S.
dc.contributor.authorJee, G.
dc.contributor.authorKwak, Y.-S.
dc.contributor.authorTsagouri, I.
dc.contributor.authorGoncharenko, L.
dc.contributor.authorMcInerney, J.
dc.contributor.authorVitt, A.
dc.contributor.authorRastaetter, L.
dc.contributor.authorYue, J.
dc.contributor.authorChou, M.
dc.contributor.authorCodrescu, M.
dc.contributor.authorCoster, A. J.
dc.contributor.authorFedrizzi, M.
dc.contributor.authorFuller-Rowell, T. J.
dc.contributor.authorRidley, A. J.
dc.contributor.authorSolomon, S. C.
dc.contributor.authorHabarulema, J. B.
dc.date.accessioned2023-06-01T20:49:27Z
dc.date.available2024-06-01 16:49:24en
dc.date.available2023-06-01T20:49:27Z
dc.date.issued2023-05
dc.identifier.citationShim, J. S.; Song, I.-S. ; Jee, G.; Kwak, Y.-S. ; Tsagouri, I.; Goncharenko, L.; McInerney, J.; Vitt, A.; Rastaetter, L.; Yue, J.; Chou, M.; Codrescu, M.; Coster, A. J.; Fedrizzi, M.; Fuller-Rowell, T. J. ; Ridley, A. J.; Solomon, S. C.; Habarulema, J. B. (2023). "Validation of Ionospheric Specifications During Geomagnetic Storms: TEC and foF2 During the 2013 March Storm Event- II." Space Weather 21(5): n/a-n/a.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/176843
dc.description.abstractAssessing space weather modeling capability is a key element in improving existing models and developing new ones. In order to track improvement of the models and investigate impacts of forcing, from the lower atmosphere below and from the magnetosphere above, on the performance of ionosphere-thermosphere models, we expand our previous assessment for 2013 March storm event (Shim et al., 2018, https://doi.org/10.1029/2018SW002034). In this study, we evaluate new simulations from upgraded models (the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model version 4.1 and the Global Ionosphere Thermosphere Model (GITM) version 21.11) and from the NCAR Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X) version 2.2 including eight simulations in the previous study. A simulation from the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model version 2 (TIE-GCM 2.0) is also included for comparison with WACCM-X. TEC and foF2 changes from quiet-time background are considered to evaluate the model performance on the storm impacts. For evaluation, we employ four skill scores: Correlation coefficient (CC), root-mean square error (RMSE), ratio of the modeled to observed maximum percentage changes (Yield), and timing error (TE). It is found that the models tend to underestimate the storm-time enhancements of foF2 (F2-layer critical frequency) and TEC (Total Electron Content) and to predict foF2 and/or TEC better in North America but worse in the Southern Hemisphere. The ensemble simulation for TEC is comparable to results from a data assimilation model (Utah State University-Global Assimilation of Ionospheric Measurements (USU-GAIM)) with differences in skill score less than 3% and 6% for CC and RMSE, respectively.Plain Language SummaryThe Earth’s ionosphere-thermosphere (IT) system, which is present between the lower atmosphere and the magnetosphere, is highly variable due to external forcings from below and above as well as internal forcings mainly associated with ion-neutral coupling processes. The variabilities of the IT system can adversely affect our daily lives, therefore, there is a need for both accurate and reliable weather forecasts to mitigate harmful effects of space weather events. In order to track the improvement of predictive capabilities of space weather models for the IT system, and to investigate the impacts of the forcings on the performance of IT models, we evaluate new simulations from upgraded models (Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics model version 4.1 and Global Ionosphere Thermosphere Model version 21.11) and from NCAR Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM-X) version 2.2 together with 8 simulations in the previous study. A simulation of NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model version 2 is also included for the comparison with WACCM-X. Quantitative evaluation is performed by using four skill scores including Correlation coefficient, root-mean square error, ratio of the modeled to observed maximum percentage changes (Yield), and timing error. The findings of this study will provide a baseline for future validation studies of new and improved models.Key PointsF2-layer critical frequency/Total Electron Content (foF2/TEC) and their changes during a storm predicted by ionosphere-thermosphere coupled models are evaluated against Global Ionosphere Radio Observatory foF2 and GPS TEC measurementsModel simulations tend to underestimate the storm-time enhancements of foF2 and TEC and to predict them better in the northern hemisphereEnsemble of all simulations for TEC is comparable to the data assimilation model (USU-GAIM)
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.titleValidation of Ionospheric Specifications During Geomagnetic Storms: TEC and foF2 During the 2013 March Storm Event-II
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176843/1/swe21490.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176843/2/swe21490_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176843/3/2022SW003388-sup-0001-Figure_SI-S01.pdf
dc.identifier.doi10.1029/2022SW003388
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRoble, R. G., & Ridley, E. C. ( 1987 ). An auroral model for the NCAR thermospheric general circulation model (TGCM). In Annales Geophysicae Series A (Vol. 5, pp. 369 – 382 ).
dc.identifier.citedreferenceLiu, H.-L., Bardeen, C. G., Foster, B. T., Lauritzen, P., Liu, J., Lu, G., et al. ( 2018 ). Development and validation of the whole atmosphere community climate model with thermosphere and ionosphere extension (WACCM-X 2.0). Journal of Advances in Modeling Earth Systems, 10 ( 2 ), 381 – 402. https://doi.org/10.1002/2017MS001232
dc.identifier.citedreferenceMatsuo, T. ( 2020 ). Recent progress on inverse and data assimilation procedure for high-latitude ionospheric electrodynamics. In M. Dunlop & H. Lühr (Eds.), Ionospheric multi-spacecraft analysis tools. ISSI scientific report series (Vol. 17 ). Springer. https://doi.org/10.1007/978-3-030-26732-2_10
dc.identifier.citedreferenceMerkin, V., & Lyon, J. ( 2010 ). Effects of the low-latitude ionospheric boundary condition on the global magnetosphere. Journal of Geophysical Research, 115 ( A10 ), A10202. https://doi.org/10.1029/2010JA015461
dc.identifier.citedreferenceMillward, G. H., Müller-Wodrag, I. C. F., Aylward, A. D., Fuller-Rowell, T. J., Richmond, A. D., & Moffett, R. J. ( 2001 ). An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics. Journal of Geophysical Research, 106 ( A11 ), 24733 – 24744. https://doi.org/10.1029/2000JA000342
dc.identifier.citedreferenceNewell, P. T., & Gjerloev, J. W. ( 2011 ). Substorm and magnetosphere characteristic scales inferred from the SuperMAG auroral electrojet indices. Journal of Geophysical Research, 116 ( A12 ), A12232. https://doi.org/10.1029/2011JA016936
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., & Wing, S. ( 2009 ). Diffuse, monoenergetic, and broadband aurora: The global precipitation budget. Journal of Geophysical Research, 114 ( A9 ), A09207. https://doi.org/10.1029/2009JA014326
dc.identifier.citedreferencePerlongo, N. J., Ridley, A. J., Cnossen, I., & Wu, C. ( 2018 ). A year-long comparison of GPS TEC and global ionosphere-thermosphere models. Journal of Geophysical Research: Space Physics, 123 ( 2 ), 1410 – 1428. https://doi.org/10.1002/2017JA024411
dc.identifier.citedreferenceQian, L., Gan, Q., Wang, W., Cai, X., Eastes, R., & Yue, J. ( 2022 ). Seasonal variation of thermospheric composition observed by NASA GOLD. Journal of Geophysical Research. Space Physics, 127 ( 6 ), e2022JA030496. https://doi.org/10.1029/2022JA030496
dc.identifier.citedreferenceRastäetter, L., Shim, J. S., Kuznetsova, M. M., Kilcommons, L. M., Knipp, D. J., Codrescu, M., et al. ( 2016 ). GEM-CEDAR challenge: Poynting flux at DMSP and modeled Joule heat. Space Weather, 14 ( 2 ), 113 – 135. https://doi.org/10.1002/2015SW001238
dc.identifier.citedreferenceReinisch, B., & Galkin, I. ( 2011 ). Global ionospheric Radio observatory (GIRO). Earth Planets and Space, 63 ( 4 ), 377 – 381. https://doi.org/10.5047/eps.2011.03.001
dc.identifier.citedreferenceRichmond, A. D. ( 2021 ). Joule heating in the thermosphere. In W. Wang & Y. Zhang (Eds.), Upper atmosphere dynamics and energetics (AGU Geophysical Monograph 261) (pp. 3 – 18 ). John Wiley & Sons. https://doi.org/10.1002/9781119815631.ch1
dc.identifier.citedreferenceRichmond, A. D., Ridley, E. C., & Roble, R. G. ( 1992 ). A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophysical Research Letters, 19 ( 6 ), 601 – 604. https://doi.org/10.1029/92gl00401
dc.identifier.citedreferenceRideout, W., & Coster, A. ( 2006 ). Automated GPS processing for global total electron content data. GPS Solutions, 10 ( 3 ), 219 – 228. https://doi.org/10.1007/s10291-006-0029-5
dc.identifier.citedreferenceRidley, A. J., Deng, Y., & Toth, G. ( 2006 ). The global ionosphere-thermosphere model. Journal of Atmospheric and Solar-Terrestrial Physics, 68 ( 8 ), 839 – 864. https://doi.org/10.1016/j.jastp.2006.01.008
dc.identifier.citedreferenceRoble, R. G., Ridley, E. C., Richmond, A. D., & Dickinson, R. E. ( 1988 ). A coupled thermosphere/ionosphere general circulation model. Geophysical Research Letters, 15 ( 12 ), 1325 – 1328. https://doi.org/10.1029/GL015i012p01325
dc.identifier.citedreferenceScherliess, L., Tsagouri, I., Yizengaw, E., Bruinsma, S., Shim, J. S., Coster, A., & Retterer, J. M. ( 2019 ). The International Community Coordinated Modeling Center space weather modeling capabilities assessment: Overview of ionosphere/thermosphere activities. Space Weather, 17 ( 4 ), 527 – 538. https://doi.org/10.1029/2018SW002036
dc.identifier.citedreferenceSchunk, R. W., Scherliess, L., Eccles, V., Gardner, L. C., Sojka, J. J., Zhu, L., et al. ( 2021 ). Challenges in specifying and predicting space weather. Space Weather, 19 ( 2 ), e2019SW002404. https://doi.org/10.1029/2019SW002404
dc.identifier.citedreferenceSharber, J. R., Link, R., Frahm, R. A., Winningham, J. D., Lummerzheim, D., Rees, M. H., et al. ( 1996 ). Validation of UARS PEM electron energy deposition. Journal of Geophysical Research, 101 ( D6 ), 9571 – 9582. https://doi.org/10.1029/95jd02702
dc.identifier.citedreferenceShim, J. S., Jee, G., & Scherliess, L. ( 2017 ). Climatology of plasmaspheric total electron content obtained from Jason 1 satellite. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 1611 – 1623. https://doi.org/10.1002/2016JA023444
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastaetter, L., Bilitza, D., Butala, M., Codrescu, M., et al. ( 2014 ). Systematic evaluation of ionosphere/thermosphere (IT) models: CEDAR electrodynamics thermosphere ionosphere (ETI) challenge (2009–2010). In Modeling the ionosphere-thermosphere system, AGU Geophysical Monograph series.
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastäetter, L., Bilitza, D., Butala, M., Codrescu, M., et al. ( 2012 ). CEDAR Electrodynamics Thermosphere Ionosphere (ETI) Challenge for systematic assessment of ionosphere/thermosphere models: Electron density, neutral density, NmF2, and hmF2 using space based observations. Space Weather, 10, S10004. https://doi.org/10.1029/2012SW000851
dc.identifier.citedreferenceShim, J. S., Kuznetsova, M., Rastäetter, L., Hesse, M., Bilitza, D., Butala, M., et al. ( 2011 ). CEDAR electrodynamics thermosphere ionosphere (ETI) challenge for systematic assessment of ionosphere/thermosphere models: NmF2, hmF2, and vertical drift using ground-based observations. Space Weather, 9 ( 12 ), S12003. https://doi.org/10.1029/2011SW000727
dc.identifier.citedreferenceShim, J. S., Rastäetter, L., Kuznetsova, M., Bilitza, D., Codrescu, M., Coster, A. J., et al. ( 2017 ). CEDAR-GEM challenge for systematic assessment of Ionosphere/thermosphere models in predicting TEC during the 2006 December storm event. Space Weather, 15 ( 10 ), 1238 – 1256. https://doi.org/10.1002/2017SW001649
dc.identifier.citedreferenceShim, J. S., Tsagouri, I., Goncharenko, L., Rastaetter, L., Kuznetsova, M., Bilitza, D., et al. ( 2018 ). Validation of ionospheric specifications during geomagnetic storms: TEC and foF2 during the 2013 March storm event. Space Weather, 16 ( 11 ), 1686 – 1701. https://doi.org/10.1029/2018SW002034
dc.identifier.citedreferenceSolomon, S. C., Burns, A. G., Emery, B. A., Mlynczak, M. G., Qian, L., Wang, W., et al. ( 2012 ). Modeling studies of the impact of high-speed streams and co-rotating interaction regions on the thermosphere-ionosphere. Journal of Geophysical Research, 117 ( A9 ), A00L11. https://doi.org/10.1029/2011JA017417
dc.identifier.citedreferenceSorathia, K., Merkin, V., Panov, E., Zhang, B., Lyon, J., Garretson, J., et al. ( 2020 ). Ballooning-interchange instability in the near-Earth plasma sheet and auroral beads: Global magnetospheric modeling at the limit of the MHD approximation. Geophysical Research Letters, 47 ( 14 ), e2020GL088227. https://doi.org/10.1029/2020GL088227
dc.identifier.citedreferenceToffoletto, F., Sazykin, S., Spiro, R., & Wolf, R. ( 2003 ). Inner magnetospheric modeling with the rice convection model. Space Science Reviews, 107 ( 1–2 ), 175 – 196. https://doi.org/10.1023/A:1025532008047
dc.identifier.citedreferenceTsagouri, I., Goncharenko, L., Shim, J. S., Belehaki, A., Buresova, D., & Kuznetsova, M. M. ( 2018 ). Assessment of current capabilities in modeling the ionospheric climatology for space weather applications: FoF2 and hmF2. Space Weather, 16 ( 12 ), 1930 – 1945. https://doi.org/10.1029/2018SW002035
dc.identifier.citedreferenceWebb, P. A., Kuznetsova, M. M., Hesse, M., Rastaetter, L., & Chulaki, A. ( 2009 ). Ionosphere-thermosphere models at the community coordinated modeling center. Radio Science, 44 ( 1 ), RS0A34. https://doi.org/10.1029/2008RS004108
dc.identifier.citedreferenceWeimer, D. R. ( 2005 ). Improved ionospheric electrodynamic models and application to calculating Joule heating rates. Journal of Geophysical Research, 110 ( A5 ), A05306. https://doi.org/10.1029/2004JA010884
dc.identifier.citedreferenceYamazaki, Y., & Richmond, A. D. ( 2013 ). A theory of ionospheric response to upward-propagating tides: Electrodynamic effects and tidal mixing effects. Journal of Geophysical Research: Space Physics, 118, 5891 – 5905. https://doi.org/10.1002/jgra.50487
dc.identifier.citedreferenceZhang, B., Sorathia, K. A., Lyon, J. G., Merkin, V. G., Garretson, J. S., & Wiltberger, M. ( 2019 ). GAMERA: A three-dimensional finite-volume MHD solver for non-orthogonal curvilinear geometries. The Astrophysical Journal Supplement Series, 244 ( 1 ), 20. https://doi.org/10.3847/1538-4365/ab3a4c
dc.identifier.citedreferenceZhao, H., Li, X., Baker, D. N., Claudepierre, S. G., Fennell, J. F., Blake, J. B., et al. ( 2016 ). Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 3333 – 3346. https://doi.org/10.1002/2016JA022358
dc.identifier.citedreferenceAkmaev, R. A. ( 2011 ). Whole atmosphere modeling: Connecting terrestrial and space weather. Reviews of Geophysics, 49 ( 4 ), 390. https://doi.org/10.1029/2011RG000364
dc.identifier.citedreferenceBrakebusch, M., Randall, C. E., Kinnison, D. E., Tilmes, S., Santee, M. L., & Manney, G. L. ( 2013 ). Evaluation of whole atmosphere community climate model simulations of ozone during Arctic winter 2004–2005. Journal of Geophysical Research, 118 ( 6 ), 2673 – 2688. https://doi.org/10.1002/jgrd.50226
dc.identifier.citedreferenceBruinsma, S., Sutton, E., Solomon, S. C., Fuller-Rowell, T., & Fedrizzi, M. ( 2018 ). Space weather modeling capabilities assessment: Neutral density for orbit determination at low Earth orbit. Space Weather, 16 ( 11 ), 1806 – 1816. https://doi.org/10.1029/2018SW002027
dc.identifier.citedreferenceChamberlin, P. C., Woods, T. N., & Eparvier, F. G. ( 2007 ). Flare irradiance spectral model (FISM): Daily component algorithms and results. Space Weather, 5 ( 7 ), S07005. https://doi.org/10.1029/2007SW000316
dc.identifier.citedreferenceCodrescu, M. V., Fuller-Rowell, T. J., Foster, J. C., Holt, J. M., & Cariglia, S. J. ( 2000 ). Electric field variability associated with the Millstone Hill electric field model. Journal of Geophysical Research, 105 ( A3 ), 5265 – 5273. https://doi.org/10.1029/1999JA900463
dc.identifier.citedreferenceDmitriev, A. V., Suvorova, V., Klimenko, M. V., Klimenko, V. V., Ratovsky, K. G., Rakhmatulin, R. A., & Parkhomov, V. A. ( 2017 ). Predictable and unpredictable ionospheric disturbances during St. Patrick’s Day magnetic storms of 2013 and 2015 and on 8–9 March 2008. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 2398 – 2423. https://doi.org/10.1002/2016JA0232
dc.identifier.citedreferenceFang, X., Randall, C. E., Lummerzheim, D., Wang, W., Lu, G., Solomon, S. C., & Frahm, R. A. ( 2010 ). Parameterization of monoenergetic electron impact ionization. Geophysical Research Letters, 37 ( 22 ), L22106. https://doi.org/10.1029/2010GL045406
dc.identifier.citedreferenceFuller-Rowell, T., Wu, F., Akmaev, R., Fang, T.-W., & Araujo-Pradere, E. ( 2010 ). A whole atmosphere model simulation of the impact of a sudden stratospheric warming on thermosphere dynamics and electrodynamics. Journal of Geophysical Research, 115 ( A10 ), A00G08. https://doi.org/10.1029/2010JA015524
dc.identifier.citedreferenceFuller-Rowell, T. J., Codrescu, M. V., Rishbeth, H., Moffett, R. J., & Quegan, S. ( 1996 ). On the seasonal response of the thermosphere and ionosphere to geomagnetic storms. Journal of Geophysical Research, 101 ( A2 ), 2343 – 2353. https://doi.org/10.1029/95ja01614
dc.identifier.citedreferenceFuller-Rowell, T. J., & Evans, D. S. ( 1987 ). Height-integrated Pedersen and Hall conductivity patterns inferred from the TIROS-NOAA satellite data. Journal of Geophysical Research, 92 ( A7 ), 7606 – 7618. https://doi.org/10.1029/ja092ia07p07606
dc.identifier.citedreferenceGelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., et al. ( 2017 ). The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). Journal of Climate, 30 ( 14 ), 5419 – 5454. https://doi.org/10.1175/JCLI-D-16-0758.1
dc.identifier.citedreferenceGettelman, A., Mills, M. J., Kinnison, D. E., Garcia, R. R., Smith, A. K., Marsh, D. R., et al. ( 2019 ). The whole atmosphere community climate model version 6 (WACCM6). Journal of Geophysical Research: Atmospheres, 124 ( 23 ), 12380 – 12403. https://doi.org/10.1029/2019JD030943
dc.identifier.citedreferenceHagan, M. E., Burrage, M. D., Forbes, J. M., Hackney, J., Randel, W. J., & Zhang, X. ( 1999 ). GSWM-98: Results for migrating solar tides. Journal of Geophysical Research, 104 ( A4 ), 6813 – 6828. https://doi.org/10.1029/1998ja900125
dc.identifier.citedreferenceHedin, A. E. ( 1991 ). Extension of the MSIS thermospheric model into the middle and lower atmosphere. Journal of Geophysical Research, 96 ( A2 ), 1159 – 1172. https://doi.org/10.1029/90ja02125
dc.identifier.citedreferenceHeelis, R. A., Lowell, J. K., & Spiro, R. W. ( 1982 ). A model of the high-latitude ionospheric convection pattern. Journal of Geophysical Research, 87 ( A8 ), 6339. https://doi.org/10.1029/ja087ia08p06339
dc.identifier.citedreferenceHeelis, R. A., & Maute, A. ( 2020 ). Challenges to understanding the Earth’s ionosphere and thermosphere. JGR: Space Physics, 125 ( 7 ), e2019JA027497. https://doi.org/10.1029/2019JA027497
dc.identifier.citedreferenceHurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J., et al. ( 2013 ). The community Earth system model: A framework for collaborative research. Bulletin of the American Meteorological Society, 94 ( 9 ), 1339 – 1360. https://doi.org/10.1175/BAMS-D-12-00121.1
dc.identifier.citedreferenceJee, G., Burns, A. G., Kim, Y. H., & Wang, W. ( 2009 ). Seasonal and solar activity variations of the Weddell Sea Anomaly observed in the TOPEX total electron content measurements. Journal of Geophysical Research - Atmosphere, 114 ( A4 ), A04307. https://doi.org/10.1029/2008ja013801
dc.identifier.citedreferenceJin, H., Miyoshi, Y., Fujiwara, H., Shinagawa, H., Terada, K., Terada, N., et al. ( 2011 ). Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. Journal of Geophysical Research, 116 ( A1 ), A01316. https://doi.org/10.1029/2010JA015925
dc.identifier.citedreferenceKalafatoglu Eyiguler, E. C., Shim, J. S., Kuznetsova, M. M., Kaymaz, Z., Bowman, B. R., Codrescu, M. V., et al. ( 2019 ). Quantifying the storm time thermospheric neutral density variations using model and observations. Space Weather, 17 ( 2 ), 269 – 284. https://doi.org/10.1029/2018SW002033
dc.identifier.citedreferenceKim, E., Jee, G., Wang, W., Kwak, Y.-S., Shim, J.-S., Ham, Y.-B., & Kim, Y. H. ( 2023 ). Hemispheric asymmetry of the polar ionospheric density investigated by ESR and JVD radar observations and TIEGCM simulations for the solar minimum period. Journal of Geophysical Research: Space Physics, 128 ( 2 ), e2022JA031126. https://doi.org/10.1029/2022ja031126
dc.identifier.citedreferenceLaundal, K. M., Cnossen, I., Milan, S. E., Haaland, S. E., Coxon, J., Pedatella, N. M., et al. ( 2017 ). North–South asymmetries in Earth’s magnetic field. Space Science Reviews, 206 ( 1–4 ), 225 – 257. https://doi.org/10.1007/s11214-016-0273-0
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.