Show simple item record

Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases

dc.contributor.authorShende, Vikram V.
dc.contributor.authorHarris, Natalia R.
dc.contributor.authorSanders, Jacob N.
dc.contributor.authorNewmister, Sean A.
dc.contributor.authorKhatri, Yogan
dc.contributor.authorMovassaghi, Mohammad
dc.contributor.authorHouk, Kendall N.
dc.contributor.authorSherman, David H.
dc.date.accessioned2023-06-01T20:49:43Z
dc.date.available2024-06-01 16:49:40en
dc.date.available2023-06-01T20:49:43Z
dc.date.issued2023-05-08
dc.identifier.citationShende, Vikram V.; Harris, Natalia R.; Sanders, Jacob N.; Newmister, Sean A.; Khatri, Yogan; Movassaghi, Mohammad; Houk, Kendall N.; Sherman, David H. (2023). "Molecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases." Angewandte Chemie 135(20): n/a-n/a.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/176849
dc.description.abstractIn the biosynthesis of the tryptophan-linked dimeric diketopiperazines (DKPs), cytochromes P450 selectively couple DKP monomers to generate a variety of intricate and isomeric frameworks. To determine the molecular basis for selectivity of these biocatalysts we obtained a high-resolution crystal structure of selective Csp2−N bond forming dimerase, AspB. Overlay of the AspB structure onto C−C and C−N bond forming homolog NzeB revealed no significant structural variance to explain their divergent chemoselectivities. Molecular dynamics (MD) simulations identified a region of NzeB with increased conformational flexibility relative to AspB, and interchange of this region along with a single active site mutation led to a variant that catalyzes exclusive C−N bond formation. MD simulations also suggest that intermolecular C−C or C−N bond formation results from a change in mechanism, supported experimentally through use of a substrate mimic.The high-resolution crystal structure of C−N bond forming diketopiperazine dimerase, AspB, was solved. However, the near complete superposition of active site residues and bound substrates in AspB/NzeB masked the molecular basis for their orthogonal chemoselectivities. Molecular dynamics simulations guided rational chimeragenesis to reprogram NzeB dimerase selectivity. Substrate mimics further validated differential substrate binding by the chemodivergent dimerases.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBiosynthesis
dc.subject.otherDiketopiperazine
dc.subject.otherEnzyme Mechanisms
dc.subject.otherMolecular Dynamics
dc.subject.otherNatural Products
dc.titleMolecular Dynamics Simulations Guide Chimeragenesis and Engineered Control of Chemoselectivity in Diketopiperazine Dimerases
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176849/1/ange202210254_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176849/2/ange202210254-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176849/3/ange202210254.pdf
dc.identifier.doi10.1002/ange.202210254
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceM. D. DeMars, N. L. Samora, S. Yang, M. Garcia-Borràs, J. N. Sanders, K. N. Houk, L. M. Podust, D. H. Sherman, J. Biol. Chem. 2019, 294, 15947 – 15961.
dc.identifier.citedreferenceT. Yao, J. Liu, Z. Liu, T. Li, H. Li, Q. Che, T. Zhu, D. Li, Q. Gu, W. Li, Nat. Commun. 2018, 9, 4091.
dc.identifier.citedreferenceC.-Y. Lai, I.-W. Lo, R. T. Hewage, Y.-C. Chen, C.-T. Chen, C.-F. Lee, S. Lin, M.-C. Tang, H.-C. Lin, Angew. Chem. Int. Ed. 2017, 56, 9478 – 9482; Angew. Chem. 2017, 129, 9606 – 9610.
dc.identifier.citedreferenceJ. Liu, X. Xie, S. Li, Angew. Chem. Int. Ed. 2019, 58, 11534 – 11540; Angew. Chem. 2019, 131, 11658 – 11664.
dc.identifier.citedreferenceS. Li, J. M. Finefield, J. D. Sunderhaus, T. J. McAfoos, R. M. Williams, D. H. Sherman, J. Am. Chem. Soc. 2012, 134, 788 – 791.
dc.identifier.citedreferenceY. Tsunematsu, N. Ishikawa, D. Wakana, Y. Goda, H. Noguchi, H. Moriya, K. Hotta, K. Watanabe, Nat. Chem. Biol. 2013, 9, 818 – 825.
dc.identifier.citedreferenceY. Ye, L. Du, X. Zhang, S. A. Newmister, M. McCauley, J. V. Alegre-Requena, W. Zhang, S. Mu, A. Minami, A. E. Fraley, M. L. Adrover-Castellano, N. A. Carney, V. V. Shende, F. Qi, H. Oikawa, H. Kato, S. Tsukamoto, R. S. Paton, R. M. Williams, D. H. Sherman, S. Li, Nat. Catal. 2020, 3, 497 – 506.
dc.identifier.citedreferenceT. Saruwatari, F. Yagishita, T. Mino, H. Noguchi, K. Hotta, K. Watanabe, ChemBioChem 2014, 15, 656 – 659.
dc.identifier.citedreferenceG. Ding, L. Jiang, L. Guo, X. Chen, H. Zhang, Y. Che, J. Nat. Prod. 2008, 71, 1861 – 1865.
dc.identifier.citedreferenceX.-B. Li, Y.-L. Li, J.-C. Zhou, H.-Q. Yuan, X.-N. Wang, H.-X. Lou, J. Asian Nat. Prod. Res. 2015, 17, 182 – 187.
dc.identifier.citedreferenceW. Tian, C. Sun, M. Zheng, J. R. Harmer, M. Yu, Y. Zhang, H. Peng, D. Zhu, Z. Deng, S.-L. Chen, M. Mobli, X. Jia, X. Qu, Nat. Commun. 2018, 9, 4428.
dc.identifier.citedreferenceH. Yu, S.-M. Li, Org. Lett. 2019, 21, 7094 – 7098.
dc.identifier.citedreferenceJ. Liu, X. Xie, S.-M. Li, Chem. Commun. 2020, 56, 11042 – 11045.
dc.identifier.citedreferenceR. P. Loach, O. S. Fenton, M. Movassaghi, J. Am. Chem. Soc. 2016, 138, 1057 – 1064.
dc.identifier.citedreferenceS. Sun, K. Ma, Q. Tao, J. Han, L. Bao, L. Liu, H. Liu, Fitoterapia 2018, 125, 266 – 272.
dc.identifier.citedreferenceR. Raju, A. M. Piggott, M. Conte, W. G. L. Aalbersberg, K. Feussner, R. J. Capon, Org. Lett. 2009, 11, 3862 – 3865.
dc.identifier.citedreferenceJ. Kim, M. Movassaghi, J. Am. Chem. Soc. 2011, 133, 14940 – 14943.
dc.identifier.citedreferenceL. Buedenbender, T. Grkovic, S. Duffy, D. I. Kurtböke, V. M. Avery, A. R. Carroll, Tetrahedron Lett. 2016, 57, 5893 – 5895.
dc.identifier.citedreferenceV. V. Shende, Y. Khatri, S. A. Newmister, J. N. Sanders, P. Lindovska, F. Yu, T. J. Doyon, J. Kim, K. N. Houk, M. Movassaghi, D. H. Sherman, J. Am. Chem. Soc. 2020, 142, 17413 – 17424.
dc.identifier.citedreferenceS. A. Newmister, V. V. Shende, N. R. Harris, J. N. Sanders, Y. Khatri, M. Movassaghi, K. N. Houk, D. H. Sherman, Protein Data Bank 2021, https://doi.org/10.2210/pdb7S3J/pdb.
dc.identifier.citedreferenceA. R. H. Narayan, G. Jiménez-Osés, P. Liu, S. Negretti, W. Zhao, M. M. Gilbert, R. O. Ramabhadran, Y.-F. Yang, L. R. Furan, Z. Li, L. M. Podust, J. Montgomery, K. N. Houk, D. H. Sherman, Nat. Chem. 2015, 7, 653 – 660.
dc.identifier.citedreferenceM. M. Gilbert, M. D. DeMars, S. Yang, J. M. Grandner, S. Wang, H. Wang, A. R. H. Narayan, D. H. Sherman, K. N. Houk, J. Montgomery, ACS Cent. Sci. 2017, 3, 1304 – 1310.
dc.identifier.citedreferenceN. R. Harris, V. V. Shende, J. N. Sanders, S. A. Newmister, Y. Khatri, M. Movassaghi, K. N. Houk, D. H. Sherman, 2021, Protein Data Bank https://doi.org/10.2210/pdb7S3T/pdb.
dc.identifier.citedreferenceR. Sang, A. Noble, V. K. Aggarwal, Angew. Chem. Int. Ed. 2021, 60, 25313 – 25317; Angew. Chem. 2021, 133, 25517 – 25521.
dc.identifier.citedreferenceJ. A. McIntosh, P. S. Coelho, C. C. Farwell, Z. J. Wang, J. C. Lewis, T. R. Brown, F. H. Arnold, Angew. Chem. Int. Ed. 2013, 52, 9309 – 9312; Angew. Chem. 2013, 125, 9479 – 9482.
dc.identifier.citedreferenceC. K. Prier, R. K. Zhang, A. R. Buller, S. Brinkmann-Chen, F. H. Arnold, Nat. Chem. 2017, 9, 629 – 634.
dc.identifier.citedreferenceM. Mirdita, K. Schütze, Y. Moriwaki, L. Heo, S. Ovchinnikov, M. Steinegger, bioRxiv 2022, https://doi.org/10.1101/2021.08.15.456425.
dc.identifier.citedreferenceC. Sun, Z. Luo, W. Zhang, W. Tian, H. Peng, Z. Lin, Z. Deng, B. Kobe, X. Jia, X. Qu, Nat. Commun. 2020, 11, 6251.
dc.identifier.citedreferenceS. Yang, M. D. DeMars, J. M. Grandner, N. M. Olson, Y. Anzai, D. H. Sherman, K. N. Houk, J. Am. Chem. Soc. 2020, 142, 17981 – 17988.
dc.identifier.citedreferenceS. C. Dodani, G. Kiss, J. K. B. Cahn, Y. Su, V. S. Pande, F. H. Arnold, Nat. Chem. 2016, 8, 419 – 425.
dc.identifier.citedreferenceA. D. Borthwick, Chem. Rev. 2012, 112, 3641 – 3716.
dc.identifier.citedreferenceJ. B. Patteson, W. Cai, R. A. Johnson, K. C. Santa Maria, B. Li, Biochemistry 2018, 57, 61 – 65.
dc.identifier.citedreferenceS. Meng, W. Han, J. Zhao, X. Jian, H. Pan, G. Tang, Angew. Chem. Int. Ed. 2018, 57, 719 – 723; Angew. Chem. 2018, 130, 727 – 731.
dc.identifier.citedreferenceT. W. Giessen, A. M. von Tesmar, M. A. Marahiel, Biochemistry 2013, 52, 4274 – 4283.
dc.identifier.citedreferenceD. H. Scharf, N. Remme, A. Habel, P. Chankhamjon, K. Scherlach, T. Heinekamp, P. Hortschansky, A. A. Brakhage, C. Hertweck, J. Am. Chem. Soc. 2011, 133, 12322 – 12325.
dc.identifier.citedreferenceS. M. Barry, J. A. Kers, E. G. Johnson, L. Song, P. R. Aston, B. Patel, S. B. Krasnoff, B. R. Crane, D. M. Gibson, R. Loria, G. L. Challis, Nat. Chem. Biol. 2012, 8, 814 – 816.
dc.identifier.citedreferenceS. A. Newmister, C. M. Gober, S. Romminger, F. Yu, A. Tripathi, L. L. L. Parra, R. M. Williams, R. G. S. Berlinck, M. M. Joullié, D. H. Sherman, J. Am. Chem. Soc. 2016, 138, 11176 – 11184.
dc.identifier.citedreferenceS. Lautru, M. Gondry, R. Genet, J.-L. Pernodet, Chem. Biol. 2002, 9, 1355 – 1364
dc.identifier.citedreferenceY. Tsunematsu, N. Maeda, M. Yokoyama, P. Chankhamjon, K. Watanabe, K. Scherlach, C. Hertweck, Angew. Chem. Int. Ed. 2018, 57, 14051 – 14054; Angew. Chem. 2018, 130, 14247 – 14250.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.