Show simple item record

Progress in Predicting Ionic Cocrystal Formation: The Case of Ammonium Nitrate

dc.contributor.authorBennett, Andrew J.
dc.contributor.authorMatzger, Adam J.
dc.date.accessioned2023-06-01T20:49:48Z
dc.date.available2024-06-01 16:49:46en
dc.date.available2023-06-01T20:49:48Z
dc.date.issued2023-05-11
dc.identifier.citationBennett, Andrew J.; Matzger, Adam J. (2023). "Progress in Predicting Ionic Cocrystal Formation: The Case of Ammonium Nitrate." Chemistry – A European Journal 29(27): n/a-n/a.
dc.identifier.issn0947-6539
dc.identifier.issn1521-3765
dc.identifier.urihttps://hdl.handle.net/2027.42/176851
dc.description.abstractIn contrast to the mature predictive frameworks applied to neutral cocrystals, ionic cocrystals, those including an ion pair, are difficult to design. Furthermore, they are generally excluded categorically from studies which correlate specific molecular properties to cocrystal formation, leaving the prospective ionic cocrystal engineer with few clear avenues to success. Herein ammonium nitrate, an energetic oxidizing salt, is targeted for cocrystallization in a potential coformer group selected based on likely interactions with the nitrate ion as revealed in the Cambridge Structural Database; six novel ionic cocrystals were discovered. Molecular descriptors previously identified as being related to neutral cocrystal formation were examined across the screening group but showed no relationship with ionic cocrystal formation. High packing coefficient is shown to be a constant among the successful coformers in the set and is utilized to directly target two more successful coformers, bypassing the need for a large screening group.Cocrystal design strategies are rapidly evolving to enhance predictive capabilities and improve the efficiency of coformer screening. However, many of the molecular descriptors associated with successful cocrystallization are ambiguous for salts, complicating coformer selection when designing ionic cocrystals. Herein, a study of ammonium nitrate ionic cocrystals reveals packing coefficient as a promising indicator for coformer success.
dc.publisherWiley Periodicals, Inc.
dc.subject.othercrystal engineering
dc.subject.otherenergetic materials
dc.subject.othernoncovalent interactions
dc.subject.otherpacking coefficient
dc.subject.othersupramolecular chemistry
dc.titleProgress in Predicting Ionic Cocrystal Formation: The Case of Ammonium Nitrate
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176851/1/chem202300076_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176851/2/chem202300076.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176851/3/chem202300076-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/chem.202300076
dc.identifier.sourceChemistry – A European Journal
dc.identifier.citedreferenceV. H. Rodrigues, M. Ramos Silva, A. Matos Beja, J. A. Paixão, M. M. R. R. Costa, Acta Crystallogr. Sect. E 2005, 61, o1631 – o1633.
dc.identifier.citedreferenceE. Grothe, H. Meekes, E. Vlieg, J. H. ter Horst, R. de Gelder, Cryst. Growth Des. 2016, 16, 3237 – 3243.
dc.identifier.citedreferenceM. K. Bellas, L. V. MacKenzie, A. J. Matzger, Cryst. Growth Des. 2021, 21, 3540 – 3546.
dc.identifier.citedreferenceD. Braga, F. Grepioni, G. I. Lampronti, L. Maini, A. Turrina, Cryst. Growth Des. 2011, 11, 5621 – 5627.
dc.identifier.citedreferenceD. Braga, F. Grepioni, O. Shemchuk, CrystEngComm 2018, 20, 2212 – 2220.
dc.identifier.citedreferenceX. Zhang, S. Chen, Y. Wu, S. Jin, X. Wang, Y. Wang, F. Shang, K. Chen, J. Du, Q. Shu, Chem. Commun. 2018, 54, 13268 – 13270.
dc.identifier.citedreferenceK. Inoue, K. Okada, M. Kumasaki, K. Usuki, J. Energ. Mater. 2022, 0, 1 – 13.
dc.identifier.citedreferenceM. Kohga, T. Naya, K. Okamoto, Int. J. Aerosp. Eng. 2012, 2012, e378483.
dc.identifier.citedreferenceD. Trache, T. M. Klapötke, L. Maiz, M. Abd-Elghany, L. T. DeLuca, Green Chem. 2017, 19, 4711 – 4736.
dc.identifier.citedreferenceC. Oommen, S. R. Jain, J. Hazard. Mater. 1999, 67, 253 – 281.
dc.identifier.citedreferenceT. Lee, J. W. Chen, H. L. Lee, T. Y. Lin, Y. C. Tsai, S.-L. Cheng, S.-W. Lee, J.-C. Hu, L.-T. Chen, Chem. Eng. J. 2013, 225, 809 – 817.
dc.identifier.citedreferenceK. M. Doxsee, P. E. Francis, T. J. R. Weakley, Tetrahedron 2000, 56, 6683 – 6691.
dc.identifier.citedreferenceM. K. Bellas, A. J. Matzger, Chem. Sci. 2022, 13, 12100 – 12106.
dc.identifier.citedreferenceG. Chen, M. Jiang, Chem. Soc. Rev. 2011, 40, 2254 – 2266.
dc.identifier.citedreferenceT. Alkhidir, Z. M. Saeed, A. F. Shunnar, E. Abujami, R. M. Nyadzayo, B. Dhokale, S. Mohamed, Cryst. Growth Des. 2022, 22, 485 – 496.
dc.identifier.citedreferenceJ.-J. Devogelaer, H. Meekes, P. Tinnemans, E. Vlieg, R. de Gelder, Angew. Chem. Int. Ed. 2020, 59, 21711 – 21718; Angew. Chem. 2020, 132, 21895 – 21902.
dc.identifier.citedreferenceM. Przybyłek, T. Jeliński, J. Słabuszewska, D. Ziółkowska, K. Mroczyńska, P. Cysewski, Cryst. Growth Des. 2019, 19, 3876 – 3887.
dc.identifier.citedreferenceD. Wang, Z. Yang, B. Zhu, X. Mei, X. Luo, Cryst. Growth Des. 2020, 20, 6610 – 6621.
dc.identifier.citedreferenceA. I. Kitaigorodskii, Acta Crystallogr. 1965, 18, 585 – 590.
dc.identifier.citedreferenceC. R. Taylor, G. M. Day, Cryst. Growth Des. 2018, 18, 892 – 904.
dc.identifier.citedreferenceS. Mohamed, A. A. Alwan, T. Friščić, A. J. Morris, M. Arhangelskis, Faraday Discuss. 2018, 211, 401 – 424.
dc.identifier.citedreferenceJ. C. Bennion, A. J. Matzger, Acc. Chem. Res. 2021, 54, 1699 – 1710.
dc.identifier.citedreferenceG. R. Desiraju, Angew. Chem. Int. Ed. Engl. 1995, 34, 2311 – 2327.
dc.identifier.citedreferenceP. A. Wood, N. Feeder, M. Furlow, P. T. A. Galek, C. R. Groom, E. Pidcock, CrystEngComm 2014, 16, 5839 – 5848.
dc.identifier.citedreferenceÖ. Almarsson, M. J. Zaworotko, Chem. Commun. 2004, 1889 – 1896.
dc.identifier.citedreferenceA. F. Shunnar, B. Dhokale, D. P. Karothu, D. H. Bowskill, I. J. Sugden, H. H. Hernandez, P. Naumov, S. Mohamed, Chem. Eur. J. 2020, 26, 4752 – 4765.
dc.identifier.citedreferenceJ. Hoja, H.-Y. Ko, M. A. Neumann, R. Car, R. A. DiStasio, A. Tkatchenko, Sci. Adv. 2019, 5, eaau3338.
dc.identifier.citedreferenceM. E. Mswahili, M.-J. Lee, G. L. Martin, J. Kim, P. Kim, G. J. Choi, Y.-S. Jeong, Appl. Sci. 2021, 11, 1323.
dc.identifier.citedreferenceM. Przybyłek, P. Cysewski, Cryst. Growth Des. 2018, 18, 3524 – 3534.
dc.identifier.citedreferenceP. T. A. Galek, F. H. Allen, L. Fábián, N. Feeder, CrystEngComm 2009, 11, 2634 – 2639.
dc.identifier.citedreferenceJ. J. Devogelaer, H. Meekes, E. Vlieg, R. de Gelder, Acta Crystallogr. Sect. B 2019, 75, 371 – 383.
dc.identifier.citedreferenceN. Sarkar, J. Mitra, M. Vittengl, L. Berndt, C. B. Aakeröy, CrystEngComm 2020, 22, 6776 – 6779.
dc.identifier.citedreferenceC. R. Groom, I. J. Bruno, M. P. Lightfoot, S. C. Ward, Acta Crystallogr. Sect. B 2016, 72, 171 – 179.
dc.identifier.citedreferenceP. T. A. Galek, L. Fábián, W. D. S. Motherwell, F. H. Allen, N. Feeder, Acta Crystallogr. Sect. B 2007, 63, 768 – 782.
dc.identifier.citedreferenceJ. McKenzie, C. A. Hunter, Phys. Chem. Chem. Phys. 2018, 20, 25324 – 25334.
dc.identifier.citedreferenceL. Fábián, Cryst. Growth Des. 2009, 9, 1436 – 1443.
dc.identifier.citedreferenceD. Musumeci, C. A. Hunter, R. Prohens, S. Scuderi, J. F. McCabe, Chem. Sci. 2011, 2, 883 – 890.
dc.identifier.citedreferenceT. Grecu, C. A. Hunter, E. J. Gardiner, J. F. McCabe, Cryst. Growth Des. 2014, 14, 165 – 171.
dc.identifier.citedreferenceD. A. Haynes, J. M. Rawson, Eur. J. Inorg. Chem. 2018, 2018, 3554 – 3564.
dc.identifier.citedreferenceM. Karimi-Jafari, L. Padrela, G. M. Walker, D. M. Croker, Cryst. Growth Des. 2018, 18, 6370 – 6387.
dc.identifier.citedreferenceN. Schultheiss, A. Newman, Cryst. Growth Des. 2009, 9, 2950 – 2967.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.