Show simple item record

Stochastic optimization of three-dimensional non-Cartesian sampling trajectory

dc.contributor.authorWang, Guanhua
dc.contributor.authorNielsen, Jon-Fredrik
dc.contributor.authorFessler, Jeffrey A.
dc.contributor.authorNoll, Douglas C.
dc.date.accessioned2023-06-01T20:50:14Z
dc.date.available2024-09-01 16:50:10en
dc.date.available2023-06-01T20:50:14Z
dc.date.issued2023-08
dc.identifier.citationWang, Guanhua; Nielsen, Jon-Fredrik ; Fessler, Jeffrey A.; Noll, Douglas C. (2023). "Stochastic optimization of three- dimensional non- Cartesian sampling trajectory." Magnetic Resonance in Medicine 90(2): 417-431.
dc.identifier.issn0740-3194
dc.identifier.issn1522-2594
dc.identifier.urihttps://hdl.handle.net/2027.42/176859
dc.publisherSpringer International Publishing
dc.publisherWiley Periodicals, Inc.
dc.subject.otherimage acquisition
dc.subject.otherdata-driven optimization
dc.subject.otherdeep learning
dc.subject.otherMRI
dc.subject.othernon-Cartesian sampling
dc.titleStochastic optimization of three-dimensional non-Cartesian sampling trajectory
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176859/1/MRM29645-sup-0001-Supinfo_supplementary_materials.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176859/2/mrm29645_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176859/3/mrm29645.pdf
dc.identifier.doi10.1002/mrm.29645
dc.identifier.sourceMagnetic Resonance in Medicine
dc.identifier.citedreferenceDesai AD, Schmidt AM, Rubin EB, et al. SKM-TEA: a dataset for accelerated MRI reconstruction with dense image labels for quantitative clinical evaluation. 2022 http://arxiv.org/abs/2203.06823
dc.identifier.citedreferenceHao S, Fessler JA, Noll DC, Nielsen JF. Joint design of excitation k-space trajectory and RF pulse for small-tip 3D tailored excitation in MRI. IEEE Trans Med Imaging. 2016; 35: 468 - 479.
dc.identifier.citedreferenceWelling M, Teh YW. Bayesian learning via stochastic gradient Langevin dynamics. Proceedings of 28th International Conference on Machine Learning(ICML). Omnipress; 2011: 681 - 688.
dc.identifier.citedreferenceKingma DP, Ba J. Adam: a method for stochastic optimization. 2017 http://arxiv.org/abs/1412.6980
dc.identifier.citedreferenceFessler JA, Lee S, Olafsson VT, Shi HR, Noll DC. Toeplitz-based iterative image reconstruction for MRI with correction for magnetic field inhomogeneity. IEEE Trans Signal Process. 2005; 53: 3393 - 3402.
dc.identifier.citedreferenceMuckley MJ, Stern R, Murrell T, Knoll F. TorchKbNufft: a high-level, hardware-agnostic non-uniform fast fourier transform. Paper presented at: ISMRM Workshop on Data Sampling & Image Reconstruction; 2020; Sedona, AZ, USA.
dc.identifier.citedreferenceWelsch GH, Scheffler K, Mamisch TC, et al. Rapid estimation of cartilage T2 based on double Echo at steady state (DESS) with 3 tesla. Magn Reson Med. 2009; 62: 544 - 549.
dc.identifier.citedreferenceSouza R, Lucena O, Garrafa J, et al. An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement. Neuroimage. 2018; 170: 482 - 494.
dc.identifier.citedreferenceBrant-Zawadzki M, Gillan GD, Nitz WR. MP RAGE: a three-dimensional, T1-weighted, gradient-Echo sequence–initial experience in the brain. Radiology. 1992; 182: 769 - 775.
dc.identifier.citedreferenceUecker M, Lai P, Murphy MJ, Virtue P, Elad M, Pauly JM. ESPIRiT - an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Mag Reson Med. 2014; 71: 990 - 1001.
dc.identifier.citedreferenceBarger AV, Block WF, Toropov Y, Grist TM, Mistretta CA. Time-resolved contrast-enhanced imaging with isotropic resolution and broad coverage using an Undersampled 3D projection trajectory. Magn Reson Med. 2002; 48: 297 - 305.
dc.identifier.citedreferenceHerrmann KH, Krämer M, Reichenbach JR. Time efficient 3D radial UTE sampling with fully automatic delay compensation on a clinical 3T MR scanner. PLoS One. 2016; 11: e0150371.
dc.identifier.citedreferenceYu S, Park B, Jeong J. Deep iterative down-up CNN for image denoising. Paper presented at:2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW); 2019; Long Beach, CA.
dc.identifier.citedreferenceRettenmeier CA, Maziero D, Stenger VA. Three dimensional radial echo planar imaging for functional MRI. Magn Reson Med. 2022; 87: 193 - 206.
dc.identifier.citedreferenceGuo S, Noll DC. Oscillating steady-state imaging (OSSI): a novel method for functional MRI. Magn Reson Med. 2020; 84: 698 - 712.
dc.identifier.citedreferenceGuo S, Fessler JA, Noll DC. High-resolution oscillating steady-state fMRI using patch-tensor low-rank reconstruction. IEEE Trans Med Imaging. 2020; 39: 4357 - 4368.
dc.identifier.citedreferenceNielsen JF, Noll DC. TOPPE: a framework for rapid prototyping of MR pulse sequences. Magn Reson Med. 2018; 79: 3128 - 3134.
dc.identifier.citedreferenceMuckley MJ, Riemenschneider B, Radmanesh A, et al. Results of the 2020 fastMRI challenge for machine learning MR image reconstruction. IEEE Trans Med Imaging. 2021; 40: 2306 - 2317.
dc.identifier.citedreferenceSutton BP, Noll DC, Fessler JA. Fast, iterative image reconstruction for MRI in the presence of field Inhomogeneities. IEEE Trans Med Imaging. 2003; 22: 178 - 188.
dc.identifier.citedreferenceAhn CB, Cho ZH. Analysis of the eddy-current induced artifacts and the temporal compensation in nuclear magnetic resonance imaging. IEEE Trans Med Imaging. 1991; 10: 47 - 52.
dc.identifier.citedreferenceDuyn JH, Yang Y, Frank JA, van der Veen JW. Simple correction method for k-space trajectory deviations in MRI. J Magn Reson. 1998; 132: 150 - 153.
dc.identifier.citedreferenceRobison RK, Li Z, Wang D, Ooi MB, Pipe JG. Correction of B0 Eddy current effects in spiral MRI. Magn Reson Med. 2019; 81: 2501 - 2513.
dc.identifier.citedreferenceMa D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013; 495: 187.
dc.identifier.citedreferenceAhn CB, Kim JH, Cho ZH. High-speed spiral-scan Echo planar NMR imaging-I. IEEE Trans Med Imaging. 1986; 5: 2 - 7.
dc.identifier.citedreferenceLauterbur PC. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature. 1973; 242: 190 - 191.
dc.identifier.citedreferenceBreuer FA, Blaimer M, Mueller MF, et al. Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA). Magn Reson Med. 2006; 55: 549 - 556.
dc.identifier.citedreferencePipe JG. Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med. 1999; 42: 963 - 969.
dc.identifier.citedreferenceGlover GH, Law CS. Spiral-in/out BOLD fMRI for increased SNR and reduced susceptibility Artifacts. Magn Reson Med. 2001; 46: 515 - 522.
dc.identifier.citedreferenceJohansson A, Balter J, Cao Y. Rigid-body motion correction of the liver in image reconstruction for Golden-angle stack-of-stars DCE MRI. Magn Reson Med. 2018; 79: 1345 - 1353.
dc.identifier.citedreferenceYu MH, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI. Clinical application of controlled aliasing in parallel imaging results in a higher acceleration (CAIPIRINHA)-volumetric interpolated Breathhold (VIBE) sequence for Gadoxetic acid-enhanced liver MR imaging. J Magn Reson Imaging. 2013; 38: 1020 - 1026.
dc.identifier.citedreferenceForbes KPN, Pipe JG, Bird CR, Heiserman JE. PROPELLER MRI: clinical testing of a novel technique for quantification and compensation of head motion. J Magn Reson Imaging. 2001; 14: 215 - 222.
dc.identifier.citedreferenceLee JH, Hargreaves BA, Hu BS, Nishimura DG. Fast 3D imaging using variable-density spiral trajectories with applications to limb perfusion. Magn Reson Med. 2003; 50: 1276 - 1285.
dc.identifier.citedreferenceGurney PT, Hargreaves BA, Nishimura DG. Design and analysis of a practical 3D cones trajectory. Magn Reson Med. 2006; 55: 575 - 582.
dc.identifier.citedreferenceJohnson KM. Hybrid radial-cones trajectory for accelerated MRI. Magn Reson Med. 2017; 77: 1068 - 1081.
dc.identifier.citedreferenceZhou Z, Han F, Yan L, Wang DJJ, Hu P. Golden-ratio rotated stack-of-stars acquisition for improved volumetric MRI. Magn Reson Med. 2017; 78: 2290 - 2298.
dc.identifier.citedreferenceHam CLG, Engels JML, van de Wiel GT, Machielsen A. Peripheral nerve stimulation during MRI: effects of high gradient amplitudes and switching rates. J Magn Reson Imaging. 1997; 7: 933 - 937.
dc.identifier.citedreferenceAggarwal HK, Jacob M. Joint optimization of sampling patterns and deep priors for improved parallel MRI. Paper presented at: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2020; Barcelona, Spain:8901-8905.
dc.identifier.citedreferenceBilgic B, Gagoski B, Cauley SF, Fan AP. Wave-CAIPI for highly accelerated 3D imaging. Magn Reson Med. 2015; 73: 2152 - 2162.
dc.identifier.citedreferenceChaithya GR, Weiss P, Daval-Frérot G, Massire A, Vignaud A, Ciuciu P. Optimizing full 3D SPARKLING trajectories for high-resolution magnetic resonance imaging. IEEE Trans Med Imaging. 2022; 41: 2105 - 2117.
dc.identifier.citedreferenceLazarus C, Weiss P, Chauffert N, et al. SPARKLING: variable-density K-space filling curves for accelerated T2*-weighted MRI. Mag Res Med. 2019; 81: 3643 - 3661.
dc.identifier.citedreferenceChaithya G, Ramzi Z, Ciuciu P. Learning the sampling density in 2D SPARKLING MRI acquisition for optimized image reconstruction. Paper presented at: 2021 29th European Signal Processing Conference (EUSIPCO). IEEE; 2021; Dublin, Ireland:960-964.
dc.identifier.citedreferenceHuijben IAM, Veeling BS, van Sloun RJG. Learning sampling and model-based signal recovery for compressed sensing MRI. Paper presented at: 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2020:8906-8910.
dc.identifier.citedreferenceWang G, Luo T, Nielsen JF, Noll DC, Fessler JA. B-spline parameterized joint optimization of reconstruction and K-space trajectories (BJORK) for accelerated 2D MRI. IEEE Trans Med Imaging. 2022; 41: 2318 - 2330.
dc.identifier.citedreferenceBahadir CD, Wang AQ, Dalca AV, Sabuncu MR. Deep-learning-based optimization of the under-sampling pattern in MRI. IEEE Trans Comput Imaging. 2020; 6: 1139 - 1152.
dc.identifier.citedreferenceWeiss T, Senouf O, Vedula S, Michailovich O, Zibulevsky M, Bronstein A. PILOT: Physics-Informed Learned Optimized Trajectories for Accelerated MRI. J Mach Learn Biomed Imag. 2021; 6: 1 - 23.
dc.identifier.citedreferenceSanchez T, Gozcu B, van Heeswijk RB, et al. Scalable learning-based sampling optimization for compressive dynamic MRI. Paper presented at: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP); 2020; Barcelona, Spain:8584-8588.
dc.identifier.citedreferenceJin KH, Unser M, Yi KM. Self-supervised deep active accelerated MRI. 2020 http://arxiv.org/abs/1901.04547
dc.identifier.citedreferenceZeng D, Sandino C, Nishimura D, Vasanawala S, Cheng J. Reinforcement learning for online undersampling pattern optimization. Paper presented at: Proceedings of the International Society of Magnetic Resononace in Medicine (ISMRM); 2019; Montreal, Canada:1092.
dc.identifier.citedreferenceSherry F, Benning M, Reyes JCD, et al. Learning the sampling pattern for MRI. IEEE Trans Med Imaging. 2020; 39: 4310 - 4321.
dc.identifier.citedreferenceGözcü B, Mahabadi RK, Li YH, et al. Learning-based compressive MRI. IEEE Trans Med Imaging. 2018; 37: 1394 - 1406.
dc.identifier.citedreferenceWang G, Fessler JA. Efficient approximation of Jacobian matrices involving a non-uniform fast Fourier transform (NUFFT). IEEE Trans Comput Imaging. 2023; 9: 43 - 54.
dc.identifier.citedreferenceAlush-Aben J, Ackerman-Schraier L, Weiss T, Vedula S, Senouf O, Bronstein A. 3D FLAT: feasible learned acquisition trajectories for accelerated MRI. In: Deeba F, Johnson P, Würfl T, Ye JC, eds. Machine Learning for Medical Image Reconstruction. Lecture Notes in Computer Science. Springer International Publishing; 2020: 3 - 16.
dc.identifier.citedreferenceGözcü B, Sanchez T, Cevher V. Rethinking sampling in parallel MRI: a data-driven approach. Paper presented at: 2019 27th European Signal Processing Conference (EUSIPCO); 2019;A Coruna, Spain:1-5.
dc.identifier.citedreferenceZibetti MVW, Herman GT, Regatte RR. Fast data-driven learning of parallel MRI sampling patterns for large scale problems. Sci Rep. 2021; 11: 19312.
dc.identifier.citedreferenceFessler JA, Sutton BP. Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans Signal Process. 2003; 51: 560 - 574.
dc.identifier.citedreferencePruessmann KP, Weiger M, Börnert P, Boesiger P. Advances in sensitivity encoding with arbitrary k-space trajectories. Magn Reson Med. 2001; 46: 638 - 651.
dc.identifier.citedreferenceWang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004; 13: 600 - 612.
dc.identifier.citedreferenceZhao H, Gallo O, Frosio I, Kautz J. Loss functions for image restoration with neural networks. IEEE Trans Comput Imaging. 2017; 3: 47 - 57.
dc.identifier.citedreferenceRadhakrishna CG, Ciuciu P. Jointly learning non-Cartesian k-space trajectories and reconstruction networks for 2D and 3D MR imaging through projection. Bioengineering. 2023; 10: 158.
dc.identifier.citedreferenceSchulte RF, Noeske R. Peripheral nerve stimulation-optimal gradient waveform design. Magn Reson Med. 2015; 74: 518 - 522.
dc.identifier.citedreferenceDavids M, Guérin B, Vom Endt A, Schad LR, Wald LL. Prediction of peripheral nerve stimulation thresholds of MRI gradient coils using coupled electromagnetic and neurodynamic simulations. Magn Reson Med. 2019; 81: 686 - 701.
dc.identifier.citedreferenceMaier O, Baete SH, Fyrdahl A, et al. CG-SENSE revisited: results from the first ISMRM reproducibility challenge. Magn Reson Med. 2021; 85: 1821 - 1839.
dc.identifier.citedreferenceLustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing MRI. IEEE Signal Process Mag. 2008; 25: 72 - 82.
dc.identifier.citedreferenceAggarwal HK, Mani MP, Jacob M. MoDL: model-based deep learning architecture for inverse problems. IEEE Trans Med Imaging. 2019; 38: 394 - 405.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.