Show simple item record

Global Hall MHD Simulations of Mercury’s Magnetopause Dynamics and FTEs Under Different Solar Wind and IMF Conditions

dc.contributor.authorLi, Changkun
dc.contributor.authorJia, Xianzhe
dc.contributor.authorChen, Yuxi
dc.contributor.authorToth, Gabor
dc.contributor.authorZhou, Hongyang
dc.contributor.authorSlavin, James A.
dc.contributor.authorSun, Weijie
dc.contributor.authorPoh, Gangkai
dc.date.accessioned2023-06-01T20:50:31Z
dc.date.available2024-06-01 16:50:21en
dc.date.available2023-06-01T20:50:31Z
dc.date.issued2023-05
dc.identifier.citationLi, Changkun; Jia, Xianzhe; Chen, Yuxi; Toth, Gabor; Zhou, Hongyang; Slavin, James A.; Sun, Weijie; Poh, Gangkai (2023). "Global Hall MHD Simulations of Mercury’s Magnetopause Dynamics and FTEs Under Different Solar Wind and IMF Conditions." Journal of Geophysical Research: Space Physics 128(5): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/176861
dc.description.abstractMercury possesses a miniature but dynamic magnetosphere driven primarily by the solar wind through magnetic reconnection. A prominent feature of the dayside magnetopause reconnection that has been frequently observed is flux transfer events (FTEs), which are thought to be an important player in driving the global convection at Mercury. Using the BATSRUS Hall magnetohydrodynamics model with coupled planetary interior, we have conducted a series of global simulations to investigate the generation and characteristics of FTEs under different solar wind Alfvénic Mach numbers (MA) and interplanetary magnetic field (IMF) orientations. An automated algorithm was also developed to consistently identify FTEs and extract their key properties from the simulations. In all simulations driven by steady upstream conditions, FTEs are formed quasi-periodically with recurrence time ranging from 2 to 9 s, and their characteristics vary in time as they evolve and interact with the surrounding plasma and magnetic field. Our statistical analysis of the simulated FTEs reveals that the key properties of FTEs, including spatial size, traveling speed and core field strength, all exhibit notable dependence on the solar wind MA and IMF orientation, and the trends identified from the simulations are generally consistent with previous MErcury Surface Space ENvironment, GEochemistry, and Ranging observations. It is also found that FTEs formed in the simulations contribute about 3%–13% of the total open flux created at the dayside magnetopause that participates in the global circulation, suggesting that FTEs indeed play an important role in driving the Dungey cycle at Mercury.Key Points3D global Hall magnetohydrodynamics simulations and an automated identification algorithm are developed to study flux transfer event formation and associated dynamics at MercuryProperties of simulated FTEs agree well with MErcury Surface Space ENvironment, GEochemistry, and Ranging (MESSENGER) observations and exhibit clear dependence on solar wind MA and interplanetary magnetic field orientationFTEs make a significant contribution to the open flux generation in Mercury’s magnetosphere, consistent with previous MESSENGER findings
dc.publisherCentrum voor Wiskunde en Informatica Amsterdam
dc.publisherWiley Periodicals, Inc.
dc.subject.othersimulation
dc.subject.otherHall MHD
dc.subject.otherflux transfer event
dc.subject.otherMercury
dc.subject.otherreconnection
dc.subject.othermagnetosphere
dc.titleGlobal Hall MHD Simulations of Mercury’s Magnetopause Dynamics and FTEs Under Different Solar Wind and IMF Conditions
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176861/1/jgra57788.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176861/2/jgra57788_am.pdf
dc.identifier.doi10.1029/2022JA031206
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSlavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., et al. ( 2009 ). MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science, 324 ( 5927 ), 606 – 610. https://doi.org/10.1126/science.1172011
dc.identifier.citedreferenceLapenta, G., Schriver, D., Walker, R. J., Berchem, J., Echterling, N. F., El Alaoui, M., & Travnicek, P. ( 2022 ). Do we need to consider electrons’ kinetic effects to properly model a planetary magnetosphere: The case of Mercury. Journal of Geophysical Research: Space Physics, 127 ( 4 ), e2021JA030241. https://doi.org/10.1029/2021JA030241
dc.identifier.citedreferenceLavorenti, F., Henri, P., Califano, F., Deca, J., Aizawa, S., André, N., & Benkhoff, J. ( 2022 ). Electron dynamics in small magnetospheres-Insights from global, fully kinetic plasma simulations of the planet Mercury. Astronomy & Astrophysics, 664, A133. https://doi.org/10.1051/0004-6361/202243911
dc.identifier.citedreferenceLiu, Y.-H., Cassak, P., Li, X., Hesse, M., Lin, S.-C., & Genestreti, K. ( 2022 ). First-principles theory of the rate of magnetic reconnection in magnetospheric and solar plasmas. Communications Physics, 5 ( 1 ), 97. https://doi.org/10.1038/s42005-022-00854-x
dc.identifier.citedreferenceLiu, Y.-H., Hesse, M., Guo, F., Daughton, W., Li, H., Cassak, P., & Shay, M. ( 2017 ). Why does steady-state magnetic reconnection have a maximum local rate of order 0.1? Physical Review Letters, 118 ( 8 ), 085101. https://doi.org/10.1103/PhysRevLett.118.085101
dc.identifier.citedreferenceLu, Q., Guo, J., Lu, S., Wang, X., Slavin, J. A., Sun, W., et al. ( 2022 ). Three-dimensional global hybrid simulations of flux transfer event showers at Mercury. The Astrophysical Journal, 937 ( 1 ), 1. https://doi.org/10.3847/1538-4357/ac8bcf
dc.identifier.citedreferenceMillilo, A., Fujimoto, M., Murakami, G., Benkhoff, J., Zender, J., Aizawa, S., et al. ( 2020 ). Investigating Mercury’s environment with the two-spacecraft BepiColombo mission. Space Science Reviews, 216, 1 – 78. https://doi.org/10.1007/s11214-020-00712-8
dc.identifier.citedreferenceMüller, J., Simon, S., Wang, Y. C., Motschmann, U., Heyner, D., Schüle, J., et al. ( 2012 ). Origin of Mercury’s double magnetopause: 3D hybrid simulation study with A.I.K.E.F. Icarus, 218 ( 1 ), 666 – 687. https://doi.org/10.1016/j.icarus.2011.12.028
dc.identifier.citedreferencePowell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & De Zeeuw, D. L. ( 1999 ). A solution-adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154 ( 2 ), 284 – 309. https://doi.org/10.1006/jcph.1999.6299
dc.identifier.citedreferenceRaines, J. M., DiBraccio, G. A., Cassidy, T. A., Delcourt, D., Fujimoto, M., Jia, X., et al. ( 2015 ). Plasma sources in planetary magnetospheres: Mercury. Space Science Reviews, 192 ( 1–4 ), 91 – 144. https://doi.org/10.1007/s11214-015-0193-4
dc.identifier.citedreferenceRussell, C. T., & Elphic, R. ( 1978 ). Initial ISEE magnetometer results: Magnetopause observations. Space Science Reviews, 22 ( 6 ), 681 – 715. https://doi.org/10.1007/BF00212619
dc.identifier.citedreferenceShue, J.-H., Chao, J. K., Fu, H. C., Russell, C. T., Song, P., Khurana, K. K., & Singer, H. J. ( 1997 ). A new functional form to study the solar wind control of the magnetopause size and shape. Journal of Geophysical Research, 102 ( A5 ), 9497 – 9511. https://doi.org/10.1029/97JA00196
dc.identifier.citedreferenceSlavin, J., Middleton, H., Raines, J., Jia, X., Zhong, J., Sun, W. J., et al. ( 2019 ). MESSENGER observations of disappearing dayside magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124 ( 8 ), 6613 – 6635. https://doi.org/10.1029/2019JA026892
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gloeckler, G., et al. ( 2010 ). MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science, 329 ( 5992 ), 665 – 668. https://doi.org/10.1126/science.1188067
dc.identifier.citedreferenceSlavin, J. A., Anderson, B. J., Baker, D. N., Benna, M., Boardsen, S. A., Gold, R. E., et al. ( 2012 ). MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. Journal of Geophysical Research, 117 ( A1 ), 1215. https://doi.org/10.1029/2011JA016900
dc.identifier.citedreferenceSlavin, J. A., DiBraccio, G. A., Gershman, D. J., Imber, S. M., Poh, G. K., Raines, J. M., et al. ( 2014 ). MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. Journal of Geophysical Research: Space Physics, 119 ( 10 ), 8087 – 8116. https://doi.org/10.1002/2014JA020319
dc.identifier.citedreferenceSlavin, J. A., & Holzer, R. E. ( 1979 ). The effect of erosion on the solar wind stand-off distance at Mercury. Journal of Geophysical Research, 84 ( A5 ), 2076 – 2082. https://doi.org/10.1029/JA084iA05p02076
dc.identifier.citedreferenceSun, T. R., Tang, B. B., Wang, C., Guo, X. C., & Wang, Y. ( 2019 ). Large-scale characteristics of flux transfer events on the dayside magnetopause. Journal of Geophysical Research: Space Physics, 124, 2425 – 2434. https://doi.org/10.1029/2018JA026395
dc.identifier.citedreferenceSun, W., Dewey, R. M., Aizawa, S., Huang, J., Slavin, J. A., Fu, S., et al. ( 2022a ). Review of Mercury’s dynamic magnetosphere: Post-MESSENGER era and comparative magnetospheres. Science China Earth Sciences, 65 ( 1 ), 25 – 74. https://doi.org/10.1007/s11430-021-9828-0
dc.identifier.citedreferenceSun, W., Slavin, J. A., Milillo, A., Dewey, R. M., Orsini, S., Jia, X., et al. ( 2022b ). MESSENGER observations of planetary ion enhancements at Mercury’s northern magnetospheric cusp during flux transfer event showers. Journal of Geophysical Research: Space Physics, 127 ( 4 ), e2022JA030280. https://doi.org/10.1029/2022JA030280
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Dewey, R. M., Chen, Y., DiBraccio, G. A., Raines, J. M., et al. ( 2020a ). MESSENGER observations of Mercury’s nightside magnetosphere under extreme solar wind conditions: Reconnection-generated structures and steady convection. Journal of Geophysical Research: Space Physics, 125 ( 3 ), e2019JA027490. https://doi.org/10.1029/2019JA027490
dc.identifier.citedreferenceSun, W. J., Slavin, J. A., Smith, A. W., Dewey, R. M., Poh, G. K., Jia, X., et al. ( 2020b ). Flux transfer event showers at Mercury: Dependence on plasma β and magnetic shear and their contribution to the Dungey cycle. Geophysical Research Letters, 47 ( 21 ), e2020GL089784. https://doi.org/10.1029/2020GL089784
dc.identifier.citedreferenceTóth, G. ( 2000 ). The ∇· B= 0 constraint in shock-capturing magnetohydrodynamics codes. Journal of Computational Physics, 161 ( 2 ), 605 – 652. https://doi.org/10.1006/jcph.2000.6519
dc.identifier.citedreferenceTóth, G., Chen, Y., Gombosi, T. I., Cassak, P., Markidis, S., & Peng, I. B. ( 2017 ). Scaling the ion inertial length and its implications for modeling reconnection in global simulations. Journal of Geophysical Research: Space Physics, 122 ( 10 ), 10336 – 10355. https://doi.org/10.1002/2017JA024189
dc.identifier.citedreferenceTóth, G., Ma, Y., & Gombosi, T. I. ( 2008 ). Hall magnetohydrodynamics on block-adaptive grids. Journal of Computational Physics, 227 ( 14 ), 6967 – 6984. https://doi.org/10.1016/j.jcp.2008.04.010
dc.identifier.citedreferenceTóth, G., Van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., Gombosi, T. I., Fang, F., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceTrávnícek, P. M., Schriver, D., Hellinger, P., Herˇcík, D., Anderson, B. J., Sarantos, M., & Slavin, J. A. ( 2010 ). Mercury’s magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results. Icarus, 209 ( 1 ), 11 – 22. https://doi.org/10.1016/j.icarus.2010.01.008
dc.identifier.citedreferenceWinslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., et al. ( 2013 ). Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. Journal of Geophysical Research: Space Physics, 118 ( 5 ), 2213 – 2227. https://doi.org/10.1002/jgra.50237
dc.identifier.citedreferenceZhou, H., Toth, G., Jia, X., & Chen, Y. ( 2020 ). Reconnection-driven dynamics at Ganymede’s upstream magnetosphere: 3-D global Hall MHD and MHD-EPIC simulations. Journal of Geophysical Research: Space Physics, 125 ( 8 ), e2020JA028162. https://doi.org/10.1029/2020JA028162
dc.identifier.citedreferenceZhou, H., Tóth, G., Jia, X., Chen, Y., & Markidis, S. ( 2019 ). Embedded kinetic simulation of Ganymede’s magnetosphere: Improvements and inferences. Journal of Geophysical Research: Space Physics, 124 ( 7 ), 5441 – 5460. https://doi.org/10.1029/2019JA026643
dc.identifier.citedreferenceAnderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., et al. ( 2011 ). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333 ( 6051 ), 1859 – 1862. https://doi.org/10.1126/science.1211001
dc.identifier.citedreferenceBaker, D. N., Pulkkinen, T. I., Angelopoulos, V., Baumjohann, W., & McPherron, R. L. ( 1996 ). Neutral line model of substorms: Past results and present view. Journal of Geophysical Research, 101 ( A6 ), 12975 – 13010. https://doi.org/10.1029/95JA03753
dc.identifier.citedreferenceBirn, J., Drake, J., Shay, M., Rogers, B., Denton, R., Hesse, M., et al. ( 2001 ). Geospace Environmental Modeling (GEM) magnetic reconnection challenge. Journal of Geophysical Research, 106 ( A3 ), 3715 – 3719. https://doi.org/10.1029/1999JA900449
dc.identifier.citedreferenceCassak, P., Liu, Y., & Shay, M. ( 2017 ). A review of the 0.1 reconnection rate problem. Journal of Plasma Physics, 83 ( 5 ), 715830501. https://doi.org/10.1017/S0022377817000666
dc.identifier.citedreferenceCassak, P. A., & Shay, M. A. ( 2007 ). Scaling of asymmetric magnetic reconnection: General theory and collisional simulations. Physics of Plasmas, 14 ( 10 ), 102114. https://doi.org/10.1063/1.2795630
dc.identifier.citedreferenceChen, Y., Tóth, G., Jia, X., Slavin, J. A., Sun, W., Markidis, S., et al. ( 2019 ). Studying dawn-dusk asymmetries of Mercury’s magnetotail using MHD-EPIC simulations. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 8954 – 8973. https://doi.org/10.1029/2019JA026840
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., et al. ( 2013 ). MESSENGER observations of magnetopause structure and dynamics at Mercury. Journal of Geophysical Research: Space Physics, 118 ( 3 ), 997 – 1008. https://doi.org/10.1002/jgra.50123
dc.identifier.citedreferenceDiBraccio, G. A., Slavin, J. A., Raines, J. M., Gershman, D. J., Tracy, P. J., Boardsen, S. A., et al. ( 2015 ). First observations of Mercury’s plasma mantle by MESSENGER. Geophysical Research Letters, 42 ( 22 ), 9666 – 9675. https://doi.org/10.1002/2015GL065805
dc.identifier.citedreferenceEinfeldt, B., Munz, C. D., Roe, P. L., & Sjögreen, B. ( 1991 ). On Godunov-type methods near low densities. Journal of Computational Physics, 92 ( 2 ), 273 – 295. https://doi.org/10.1016/0021-9991(91)90211-3
dc.identifier.citedreferenceExner, W., Heyner, D., Liuzzo, L., Motschmann, U., Shiota, D., Kusano, K., & Shibayama, T. ( 2018 ). Coronal mass ejection hits Mercury: A.I.K.E.F. hybrid-code results compared to MESSENGER data. Planetary and Space Science, 153, 89 – 99. https://doi.org/10.1016/j.pss.2017.12.016
dc.identifier.citedreferenceFatemi, S., Poirier, N., Holmström, M., Lindkvist, J., Wieser, M., & Barabash, S. ( 2018 ). A modelling approach to infer the solar wind dynamic pressure from magnetic field observations inside Mercury’s magnetosphere. Astronomy & Astrophysics, 614, A132. https://doi.org/10.1051/0004-6361/201832764
dc.identifier.citedreferenceFear, R. C., Coxon, J. C., & Jackman, C. M. ( 2019 ). The contribution of flux transfer events to Mercury’s Dungey cycle. Geophysical Research Letters, 46 ( 24 ), 14239 – 14246. https://doi.org/10.1029/2019GL085399
dc.identifier.citedreferenceGombosi, T. I., Chen, Y., Glocer, A., Huang, Z., Jia, X., Liemohn, M. W., et al. ( 2021 ). What sustained multi-disciplinary research can achieve: The space weather modeling framework. Journal of Space Weather and Space Climate, 11, 42. https://doi.org/10.1051/swsc/2021020
dc.identifier.citedreferenceHeyner, D., Nabert, C., Liebert, E., & Glassmeier, K. H. ( 2016 ). Concerning reconnection-induction balance at the magnetopause of Mercury. Journal of Geophysical Research: Space Physics, 121 ( 4 ), 2935 – 2961. https://doi.org/10.1002/2015JA021484
dc.identifier.citedreferenceImber, S. M., Slavin, J. A., Boardsen, S. A., Anderson, B. J., Korth, H., McNutt, R. L., & Solomon, S. C. ( 2014 ). MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle? Journal of Geophysical Research: Space Physics, 119 ( 7 ), 5613 – 5623. https://doi.org/10.1002/2014JA019884
dc.identifier.citedreferenceJia, X., Slavin, J. A., Gombosi, T. I., Daldorff, L. K. S., Toth, G., & van der Holst, B. ( 2015 ). Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. Journal of Geophysical Research: Space Physics, 120 ( 6 ), 4763 – 4775. https://doi.org/10.1002/2015JA021143
dc.identifier.citedreferenceJia, X., Slavin, J. A., Poh, G., DiBraccio, G. A., Toth, G., Chen, Y., et al. ( 2019 ). MESSENGER observations and global simulations of highly compressed magnetosphere events at Mercury. Journal of Geophysical Research: Space Physics, 124 ( 1 ), 229 – 247. https://doi.org/10.1029/2018JA026166
dc.identifier.citedreferenceKabin, K., Heimpel, M. H., Rankin, R., Aurnou, J. M., Gómez-Pérez, N., Paral, J., et al. ( 2008 ). Global MHD modeling of Mercury’s magnetosphere with applications to the MESSENGER mission and dynamo theory. Icarus, 195, 1 – 15. https://doi.org/10.1016/j.icarus.2007.11.028
dc.identifier.citedreferenceKieokaew, R., Lavraud, B., Fargette, N., Marchaudon, A., Génot, V., Jacquey, C., et al. ( 2021 ). Statistical relationship between interplanetary magnetic field conditions and the helicity sign of flux transfer event flux ropes. Geophysical Research Letters, 48 ( 6 ), e2020GL091257. https://doi.org/10.1029/2020GL091257
dc.identifier.citedreferenceKivelson, M. G., & Ridley, A. J. ( 2008 ). Saturation of the polar cap potential: Inference from Alfvén wing arguments. Journal of Geophysical Research, 113 ( A5 ), A05214. https://doi.org/10.1029/2007JA012302
dc.identifier.citedreferenceKoren, B. ( 1993 ). A robust upwind discretization method for advection, diffusion and source terms. Centrum voor Wiskunde en Informatica Amsterdam.
dc.identifier.citedreferenceKuznetsova, M. M., Sibeck, D. G., Hesse, M., Wang, Y., Rastaetter, L., Toth, G., & Ridley, A. ( 2009 ). Cavities of weak magnetic field strength in the wake of FTEs: Results from global magnetospheric MHD simulations. Geophysical Research Letters, 36 ( 10 ), L10104. https://doi.org/10.1029/2009GL037489
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.