Show simple item record

Changing black carbon transport to the Arctic from present day to the end of 21st century

dc.contributor.authorJiao, Chaoyi
dc.contributor.authorFlanner, Mark G.
dc.date.accessioned2023-06-01T20:50:36Z
dc.date.available2023-06-01T20:50:36Z
dc.date.issued2016-05-16
dc.identifier.citationJiao, Chaoyi; Flanner, Mark G. (2016). "Changing black carbon transport to the Arctic from present day to the end of 21st century." Journal of Geophysical Research: Atmospheres 121(9): 4734-4750.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/176863
dc.description.abstractHere we explore how climate warming under the Representative Concentration Pathway 8.5 (RCP8.5) impacts Arctic aerosol distributions via changes in atmospheric transport and removal processes. We modify the bulk aerosol module in the Community Atmosphere Model to track distributions and fluxes of 200 black carbon-like tracers emitted from different locations, and we conduct idealized experiments with and without active aerosol deposition. Changing wind patterns, studied in isolation, cause the Arctic burdens of tracers emitted from East Asia and West Europe during winter to increase about 20% by the end of the century while decreasing the Arctic burdens of North American emissions by about 30%. These changes are caused by an altered winter polar dome structure that results from Arctic amplification and inhomogeneous sea ice loss and surface warming, both of which are enhanced in the Chukchi Sea region. The resulting geostrophic wind favors Arctic transport of East Asian emissions while inhibiting poleward transport of North American emissions. When active deposition is also considered, however, Arctic burdens of emissions from northern midlatitudes show near-universal decline. This is a consequence of increased precipitation and wet removal, particularly within the Arctic, leading to decreased Arctic residence time. Simulations with present-day emissions of black carbon indicate a 13.6% reduction in the Arctic annual mean burden by the end of the 21st century, due to warming-induced transport and deposition changes, while simulations with changing climate and emissions under RCP8.5 show a 61.0% reduction.Key PointsWe explore changing Arctic aerosol transport and deposition in a warming climateCirculation changes enhance/reduce Arctic transport of East Asia/North America emissionsMore efficient wet removal substantially reduces Arctic BC lifetime and burden
dc.publisherWiley Periodicals, Inc.
dc.subject.otheraerosol transport
dc.subject.otherpolar dome
dc.subject.otherblack carbon
dc.subject.otherfuture change
dc.titleChanging black carbon transport to the Arctic from present day to the end of 21st century
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176863/1/jgrd52936_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176863/2/jgrd52936.pdf
dc.identifier.doi10.1002/2015JD023964
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceRiahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj ( 2011 ), Rcp 8.5—A scenario of comparatively high greenhouse gas emissions, Clim. Change, 109 ( 1–2 ), 33 – 57, doi: 10.1007/s10584-011-0149-y.
dc.identifier.citedreferenceLee, M.-Y., C.-C. Hong, and H.-H. Hsu ( 2015 ), Compounding effects of warm sea surface temperature and reduced sea ice on the extreme circulation over the extratropical North Pacific and North America during the 2013–2014 boreal winter, Geophys. Res. Lett., 42, 1612 – 1618, doi: 10.1002/2014GL062956.
dc.identifier.citedreferenceLee, Y. H., et al. ( 2013 ), Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP), Atmos. Chem. Phys., 13 ( 5 ), 2607 – 2634, doi: 10.5194/acp-13-2607-2013.
dc.identifier.citedreferenceLiu, J., S. Fan, L. W. Horowitz, and H. Levy II ( 2011 ), Evaluation of factors controlling long-range transport of black carbon to the Arctic, J. Geophys. Res., 116, D04307, doi: 10.1029/2010JD015145.
dc.identifier.citedreferenceLiu, X., et al. ( 2012 ), Toward a minimal representation of aerosols in climate models: Description and evaluation in the Community Atmosphere Model CAM5, Geosci. Model Dev., 5 ( 3 ), 709 – 739, doi: 10.5194/gmd-5-709-2012.
dc.identifier.citedreferenceMa, P.-L., J. R. Gattiker, X. Liu, and P. J. Rasch ( 2013 ), A novel approach for determining source-receptor relationships in model simulations: A case study of black carbon transport in northern hemisphere winter, Environ. Res. Lett., 8 ( 2 ), 24042.
dc.identifier.citedreferenceRamanathan, V., and G. Carmichael ( 2008 ), Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221 – 227.
dc.identifier.citedreferenceRao, S., and K. Riahi ( 2006 ), The role of non-CO 2 greenhouse gases in climate change mitigation: Long-term scenarios for the 21st century, Energy J., 27, 177 – 200.
dc.identifier.citedreferenceRasch, P. J., M. C. Barth, J. T. Kiehl, S. E. Schwartz, and C. M. Benkovitz ( 2000 ), A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, J. Geophys. Res., 105, 1367 – 1385.
dc.identifier.citedreferenceRiahi, K., A. Grübler, and N. Nakicenovic ( 2007 ), Scenarios of long-term socio-economic and environmental development under climate stabilization, Technol. Forecasting Social Change, 74 ( 7 ), 887 – 935, doi: 10.1016/j.techfore.2006.05.026, greenhouse Gases - Integrated Assessment.
dc.identifier.citedreferenceScreen, J. A., and I. Simmonds ( 2010 ), The central role of diminishing sea ice in recent Arctic temperature amplification, Nature, 464, 1334 – 1337, doi: 10.1038/nature09051.
dc.identifier.citedreferenceScreen, J. A., C. Deser, and I. Simmonds ( 2012 ), Local and remote controls on observed Arctic warming, Geophys. Res. Lett., 39, L10709, doi: 10.1029/2012GL051598.
dc.identifier.citedreferenceSerreze, M. C., A. P. Barrett, J. C. Stroeve, D. N. Kindig, and M. M. Holland ( 2009 ), The emergence of surface-based Arctic amplification, Cryosphere, 3 ( 1 ), 11 – 19.
dc.identifier.citedreferenceSharma, S., E. Andrews, L. A. Barrie, J. A. Ogren, and D. Lavoue ( 2006 ), Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989–2003, J. Geophys. Res, 111, D14208, doi: 10.1029/2005JD006581.
dc.identifier.citedreferenceShindell, D. T., et al. ( 2008 ), A multi-model assessment of pollution transport to the Arctic, Atmos. Chem. Phys., 8, 5353 – 5372, doi: 10.5194/acp-8-5353-2008.
dc.identifier.citedreferenceStohl, A. ( 2006 ), Characteristics of atmospheric transport into the Arctic troposphere, J. Geophys. Res., 111, D11306, doi: 10.1029/2005JD006888.
dc.identifier.citedreferenceStohl, A., Z. Klimont, S. Eckhardt, K. Kupiainen, V. P. Shevchenko, V. M. Kopeikin, and A. N. Novigatsky ( 2013 ), Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions, Atmos. Chem. Phys., 13 ( 17 ), 8833 – 8855, doi: 10.5194/acp-13-8833-2013.
dc.identifier.citedreferenceWang, H., R. C. Easter, P. J. Rasch, M. Wang, X. Liu, S. J. Ghan, Y. Qian, J.-H. Yoon, P.-L. Ma, and V. Vinoj ( 2013 ), Sensitivity of remote aerosol distributions to representation of cloud-aerosol interactions in a global climate model, Geosci. Model Dev., 6 ( 3 ), 765 – 782, doi: 10.5194/gmd-6-765-2013.
dc.identifier.citedreferenceWang, H., P. J. Rasch, R. C. Easter, B. Singh, R. Zhang, P.-L. Ma, Y. Qian, S. J. Ghan, and N. Beagley ( 2014 ), Using an explicit emission tagging method in global modeling of source-receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways, J. Geophys. Res. Atmos., 119, 12,888 – 12,909, doi: 10.1002/2014JD022297.
dc.identifier.citedreferenceWang, Q., et al. ( 2011 ), Sources of carbonaceous aerosols and deposited black carbon in the Arctic in winter-spring: Implications for radiative forcing, Atmos. Chem. Phys., 11 ( 23 ), 12,453 – 12,473, doi: 10.5194/acp-11-12453-2011.
dc.identifier.citedreferenceZhou, C., J. E. Penner, M. G. Flanner, M. M. Bisiaux, R. Edwards, and J. R. McConnell ( 2012 ), Transport of black carbon to polar regions: Sensitivity and forcing by black carbon, Geophys. Res. Lett., 39, L22804, doi: 10.1029/2012GL053388.
dc.identifier.citedreferenceBarth, M. C., P. J. Rasch, J. T. Kiehl, C. M. Benkovitz, and S. E. Schwartz ( 2000 ), Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry, J. Geophys. Res., 105 ( D1 ), 1387 – 1415.
dc.identifier.citedreferenceBintanja, R., and E. C. van der Linden ( 2013 ), The changing seasonal climate in the Arctic, Nature, 3, 1556, doi: 10.1038/srep01556.
dc.identifier.citedreferenceBond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res. Atmos., 118, 5380 – 5552, doi: 10.1002/jgrd.50171.
dc.identifier.citedreferenceBrowse, J., K. S. Carslaw, A. Schmidt, and J. J. Corbett ( 2013 ), Impact of future Arctic shipping on high-latitude black carbon deposition, Geophys. Res. Lett., 40, 4459 – 4463, doi: 10.1002/grl.50876.
dc.identifier.citedreferenceCorbett, J. J., D. A. Lack, J. J. Winebrake, S. Harder, J. A. Silberman, and M. Gold ( 2010 ), Arctic shipping emissions inventories and future scenarios, Atmos. Chem. Phys., 10 ( 19 ), 9689 – 9704, doi: 10.5194/acp-10-9689-2010.
dc.identifier.citedreferenceEckhardt, S., et al. ( 2015 ), Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: A multi-model evaluation using a comprehensive measurement data set, Atmos. Chem. Phys., 15 ( 16 ), 9413 – 9433, doi: 10.5194/acp-15-9413-2015.
dc.identifier.citedreferenceFlanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present-day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi: 10.1029/2006JD008003.
dc.identifier.citedreferenceFrancis, J. A., and S. J. Vavrus ( 2012 ), Evidence linking Arctic amplification to extreme weather in mid-latitudes, Geophys. Res. Lett., 39, L06801, doi: 10.1029/2012GL051000.
dc.identifier.citedreferenceGarrett, T. J., C. Zhao, and P. C. Novelli ( 2010 ), Assessing the relative contributions of transport efficiency and scavenging to seasonal variability in Arctic aerosol, Tellus, 62B, 190 – 196, doi: 10.1111/j.1600-0889.2010.00453.x.
dc.identifier.citedreferenceGarrett, T. J., S. Brattström, S. Sharma, D. E. Worthy, and P. Novelli ( 2011 ), The role of scavenging in the seasonal transport of black carbon and sulfate to the Arctic, Geophys. Res. Lett., 38, L16805, doi: 10.1029/2011GL048221.
dc.identifier.citedreferenceGent, P. R., et al. ( 2011 ), The Community Climate System Model version 4, J. Clim., 24 ( 19 ), 4973 – 4991.
dc.identifier.citedreferenceHolland, M. M., and C. M. Bitz ( 2003 ), Polar amplification of climate change in coupled models, Clim. Dyn., 21, 221 – 232, doi: 10.1007/s00382-003-0332-6.
dc.identifier.citedreferenceKlonecki, A., P. Hess, L. Emmons, L. Smith, J. Orlando, and D. Blake ( 2003 ), Seasonal changes in the transport of pollutants into the Arctic troposphere-model study, J. Geophys. Res., 108 ( D4 ), 8367, doi: 10.1029/2002JD002199.
dc.identifier.citedreferenceKoch, D., and J. Hansen ( 2005 ), Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment, J. Geophys. Res., 110, D04204, doi: 10.1029/2004JD005296.
dc.identifier.citedreferenceKoch, D., et al. ( 2009 ), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys., 9 ( 22 ), 9001 – 9026, doi: 10.5194/acp-9-9001-2009.
dc.identifier.citedreferenceLamarque, J.-F., et al. ( 2010 ), Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application, Atmos. Chem. Phys., 10 ( 15 ), 7017 – 7039, doi: 10.5194/acp-10-7017-2010.
dc.identifier.citedreferenceLamarque, J.-F., G. Kyle, M. Meinshausen, K. Riahi, S. Smith, D. van Vuuren, A. Conley, and F. Vitt ( 2011 ), Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways, Clim. Change, 109 ( 1–2 ), 191 – 212, doi: 10.1007/s10584-011-0155-0.
dc.identifier.citedreferenceLamarque, J.-F., et al. ( 2012 ), Cam-chem: Description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5 ( 2 ), 369 – 411, doi: 10.5194/gmd-5-369-2012.
dc.identifier.citedreferenceLaw, K. S., and A. Stohl ( 2007 ), Arctic air pollution: Origins and impacts, Science, 315, 1537 – 1540.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.