Show simple item record

The oldest evidence of brooding in a Devonian blastoid reveals the evolution of new reproductive strategies in early echinoderms

dc.contributor.authorÁlvarez-Armada, Nidia
dc.contributor.authorBauer, Jennifer E.
dc.contributor.authorWaters, Johnny A.
dc.contributor.authorRahman, Imran A.
dc.date.accessioned2023-06-01T20:51:26Z
dc.date.available2024-06-01 16:51:21en
dc.date.available2023-06-01T20:51:26Z
dc.date.issued2023-05
dc.identifier.citationÁlvarez-Armada, Nidia ; Bauer, Jennifer E.; Waters, Johnny A.; Rahman, Imran A. (2023). "The oldest evidence of brooding in a Devonian blastoid reveals the evolution of new reproductive strategies in early echinoderms." Papers in Palaeontology (3): n/a-n/a.
dc.identifier.issn2056-2802
dc.identifier.issn2056-2802
dc.identifier.urihttps://hdl.handle.net/2027.42/176881
dc.description.abstractBrooding of young is a reproductive strategy observed in many extant echinoderms, but the evolutionary history of this behaviour is largely unknown due to the scarcity of examples preserved in the fossil record. Here, synchrotron x-ray tomography is used to describe an exceptionally preserved specimen of the Devonian blastoid echinoderm Hyperoblastus reimanni. The coelomic cavity appears completely preserved in a coiled arrangement partially enclosing organs associated with the digestive, haemal and axial systems. The vault region of the coelom surrounds four structures interpreted as three internally brooded larvae and a gonad. The presence of putative larvae brooded internally in this specimen sheds new light on the reproductive strategies used by blastoids, suggesting they were sexually dimorphic and that internal brooding was acquired early in the group’s history. The acquisition of brooding may have been linked to high clastic sediment influx associated with the Appalachian Orogeny, which would have been detrimental to the survival of larvae living at the soupy sediment–water interface.
dc.publisherWiley Periodicals, Inc.
dc.publisherAcademic Press
dc.subject.otherlarvae
dc.subject.otherreproduction
dc.subject.othersexual dimorphism
dc.subject.otherechinoderm
dc.subject.otherblastoid
dc.subject.othersynchrotron x-ray tomography
dc.titleThe oldest evidence of brooding in a Devonian blastoid reveals the evolution of new reproductive strategies in early echinoderms
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176881/1/spp21493_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176881/2/spp21493.pdf
dc.identifier.doi10.1002/spp2.1493
dc.identifier.sourcePapers in Palaeontology
dc.identifier.citedreferenceObuchi, M., Fujita, Y., Nakano, Y., Uehara, T. and Motokawa, T. 2010. Reproductive biology and early life history of hermaphroditic feather star Dorometra sesokonis (Echinodermata: Crinoidea). Marine Biology, 157, 1191 – 1201.
dc.identifier.citedreferenceEzhova, O. V. and Malakhov, V. V. Y. 2020. Axial complex of Crinoidea: comparison with other Ambulacraria. Journal of Morphology, 281, 1456 – 1475.
dc.identifier.citedreferenceFortey, R. A. and Hughes, N. C. 1998. Brood pouches in trilobites. Journal of Paleontology, 72, 638 – 649.
dc.identifier.citedreferenceGillespie, J. M. and McClintock, J. B. 2007. Brooding in echinoderms: how can modern experimental techniques add to our historical perspective? Journal of Experimental Marine Biology & Ecology, 342, 191 – 201.
dc.identifier.citedreferenceHarris, F. W. and Martin, W. D. 1979. Benthic community development in limestone beds of the Waynesville (upper Dillsboro) Formation (Cincinnatian Series, Upper Ordovician) of southeastern Indiana. Journal of Sedimentary Research, 49, 1295 – 1305.
dc.identifier.citedreferenceHaugh, B. N. 1975. Digestive and coelomic systems of Mississippian camerate crinoids. Journal of Paleontology, 49, 472 – 493.
dc.identifier.citedreferenceHaugh, B. N. and Bell, B. M. 1980. Fossilized viscera in primitive echinoderms. Science, 209, 653 – 657.
dc.identifier.citedreferenceHeckel, P. H. 2013. Pennsylvanian stratigraphy of Northern Midcontinent Shelf and biostratigraphic correlation of cyclothems. Stratigraphy, 10, 3 – 39.
dc.identifier.citedreferenceHyman, L. H. 1955. The invertebrates: Echinodermata. McGraw-Hill, 763 pp.
dc.identifier.citedreferenceKatz, S. G. and Sprinkle, J. 1976. Fossilized eggs in a Pennsylvanian blastoid. Science, 192, 1137 – 1139.
dc.identifier.citedreferenceKesling, R. V. and Chilman, R. B. 1975. Strata and megafossils of the Middle Devonian Silica Formation. Papers on Paleontology, 8, 408 pp.
dc.identifier.citedreferenceLandschoff, J., Du Plessis, A. and Griffiths, C. L. 2015. A dataset describing brooding in three species of South African brittle stars, comprising seven high-resolution, micro X-ray computed tomography scans. GigaScience, 4, 52.
dc.identifier.citedreferenceMcClary, D. and Mladenov, P. 1988. Brood and broadcast: a novel mode of reproduction in the sea star Pteraster militaris. 163 – 168. In Burke, R. D., Mladenov, P. V., Lambert, P. and Parsley, R. L. (eds) Echinoderm biology: Proceedings of the Sixth International Echinoderm Conference, Victoria, 23–28 August 1987. A. A. Balkema.
dc.identifier.citedreferenceOji, T. 1996. Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology, 22, 339 – 351.
dc.identifier.citedreferencePearse, J. S. 1994. Cold-water echinoderms break Thorson’s rule. 26 – 43. In Young, C. M. and Eckelbarger, K. J. (eds) Reproduction, larval biology and recruitment in the deep-sea benthos. Columbia University Press, 336 pp.
dc.identifier.citedreferencePertossi, R. M., Penchazadeh, P. E. and Martinez, M. I. 2021. Brooding comatulids from the southwestern Atlantic, Argentina (Echinodermata: Crinoidea). Marine Biodiversity, 51, 59.
dc.identifier.citedreferenceRahman, I. A., Waters, J. A., Sumrall, C. D. and Astolfo, A. 2015. Early post-metamorphic, Carboniferous blastoid reveals the evolution and development of the digestive system in echinoderms. Biology Letters, 11, 20150776.
dc.identifier.citedreferenceSaulsbury, J. and Zamora, S. 2020. The nervous and circulatory systems of a Cretaceous crinoid: preservation, palaeobiology and evolutionary significance. Palaeontology, 63, 243 – 253.
dc.identifier.citedreferenceScherer, A. E., Bird, C. E., McCutcheon, M. R., Hu, X. and Smee, D. L. 2018. Two-tiered defense strategy may compensate for predator avoidance costs of an ecosystem engineer. Marine Biology, 165, 131.
dc.identifier.citedreferenceSevastopulo, G. D. 2005. The early ontogeny of blastoids. Geological Journal, 40, 351 – 362.
dc.identifier.citedreferenceSmith, A. B. 2005. The pre-radial history of echinoderms. Geological Journal, 40, 255 – 280.
dc.identifier.citedreferenceSmith, A. B., Zamora, S. and Alvaro, J. J. 2013. The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nature Communications, 4, 1385.
dc.identifier.citedreferenceSutherland, P. K. and Henry, T. W. 1977. Carbonate platform facies and new stratigraphic nomenclature of the Morrowan Series (Lower and Middle Pennsylvanian), northeastern Oklahoma. Geological Society of America Bulletin, 88, 425 – 440.
dc.identifier.citedreferenceSutton, M. D., Garwood, R. J., Siveter, D. J. and Siveter, D. J. 2012. SPIERS and VAXML; a software toolkit for tomographic visualisation and a format for virtual specimen interchange. Palaeontologia Electronica, 15, 289.
dc.identifier.citedreferenceVieira, E. A., Duarte, L. F. L. and Dias, G. M. 2012. How the timing of predation affects composition and diversity of species in a marine sessile community? Journal of Experimental Marine Biology & Ecology, 412, 126 – 133.
dc.identifier.citedreferenceWiedman, L. A. 1985. Community paleoecological study of the Silica Shale equivalent of northeastern Indiana. Journal of Paleontology, 59, 160 – 182.
dc.identifier.citedreferenceBalser, E. J. 2002. Phylum Echinodermata: Crinoidea. 463 – 482. In Young, C. M., Sewell, M. A. and Rice, M. E. (eds) Atlas of marine invertebrate larvae. Academic Press, 691 pp.
dc.identifier.citedreferenceBargmann, W. and Von Hehn, G. 1968. Über das Axialorgan (“mysterious gland”) von Asterias rubens L. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 88, 262 – 277.
dc.identifier.citedreferenceBarreto, F. S. and Bauer, K. K. 2019. Genetic evidence for alloparental care and frequent multiple paternity in the brooding sea star ( Leptasterias sp.). Marine Biology, 166, 38.
dc.identifier.citedreferenceBauer, J. E. 2018. Respiratory structure morphology, group origins, and phylogeny of Eublastoidea (Echinodermata). PhD thesis, University of Tennessee, 156 pp. https://trace.tennessee.edu/utk_graddiss/4949
dc.identifier.citedreferenceBauer, J. E., Sumrall, C. D., Waters, J. A., Zamora, S. and Rahman, I. A. 2017. Hydrospire morphology and implications for blastoid phylogeny. Journal of Paleontology, 91, 847 – 857.
dc.identifier.citedreferenceBauer, J. E., Waters, J. A. and Sumrall, C. D. 2019. Redescription of Macurdablastus and redefinition of Eublastoidea as a clade of Blastoidea (Echinodermata). Palaeontology, 62, 1003 – 1013.
dc.identifier.citedreferenceBird, J. M. and Dewey, J. F. 1970. Lithosphere plate-continental margin tectonics and the evolution of the Appalachian orogen. Geological Society of America Bulletin, 81, 1031 – 1060.
dc.identifier.citedreferenceBreimer, A. and Dop, A. 1975. An anatomic and taxonomic study of some Lower and Middle Devonian blastoids from Europe and North America. Verhandelingen der Koninklijke Nederlande Akademie Van Wetenschappen B, 78, 39 – 61.
dc.identifier.citedreferenceBreimer, A. and Macurda, D. B. Jr 1972. The phylogeny of the fissiculate blastoids. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen B, 26, 13 – 390.
dc.identifier.citedreferenceBrett, C. E., Moffat, H. A. and Taylor, W. L. 1997. Echinoderm taphonomy, taphofacies, and Lagerstätten. The Paleontological Society Papers, 3, 147 – 190.
dc.identifier.citedreferenceCaron, J.-B. and Vannier, J. 2016. Waptia and the diversification of brood care in early arthropods. Current Biology, 26, 69 – 74.
dc.identifier.citedreferenceCohen, A. S. and Johnston, M. R. 1987. Speciation in brooding and poorly dispersing lacustrine organisms. PALAIOS, 2, 426 – 435.
dc.identifier.citedreferenceCroneis, C. and Geis, H. L. 1940. Microscopic Pelmatozoa: part 1, ontogeny of the Blastoidea. Journal of Paleontology, 14, 345 – 355.
dc.identifier.citedreferenceDonovan, S. K., Webster, G. D. and Waters, J. A. 2016. A last peak in diversity: the stalked echinoderms of the Permian of Timor. Geology Today, 32, 179 – 185.
dc.identifier.citedreferenceEhlers, G. M. and Kesling, R. V. 1970. Devonian strata of Alpena and Presque Isle counties, Michigan. Michigan Basin Geological Society, Guide Book for Field Trips, GSA North-Central Section Meeting.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.