Non-invasive treatment of ischemia/reperfusion injury: Effective transmission of therapeutic near-infrared light into the human brain through soft skin-conforming silicone waveguides
dc.contributor.author | Morse, Paul T. | |
dc.contributor.author | Tuck, Samuel | |
dc.contributor.author | Kerns, Mike | |
dc.contributor.author | Goebel, Dennis J. | |
dc.contributor.author | Wan, Junmei | |
dc.contributor.author | Waddell, Tom | |
dc.contributor.author | Wider, Joseph M. | |
dc.contributor.author | Hüttemann, Charlotte L. | |
dc.contributor.author | Malek, Moh H. | |
dc.contributor.author | Lee, Icksoo | |
dc.contributor.author | Sanderson, Thomas H. | |
dc.contributor.author | Hüttemann, Maik | |
dc.date.accessioned | 2023-06-01T20:51:52Z | |
dc.date.available | 2024-06-01 16:51:45 | en |
dc.date.available | 2023-06-01T20:51:52Z | |
dc.date.issued | 2023-05 | |
dc.identifier.citation | Morse, Paul T.; Tuck, Samuel; Kerns, Mike; Goebel, Dennis J.; Wan, Junmei; Waddell, Tom; Wider, Joseph M.; Hüttemann, Charlotte L. ; Malek, Moh H.; Lee, Icksoo; Sanderson, Thomas H.; Hüttemann, Maik (2023). "Non- invasive treatment of ischemia/reperfusion injury: Effective transmission of therapeutic near- infrared light into the human brain through soft skin- conforming silicone waveguides." Bioengineering & Translational Medicine 8(3): n/a-n/a. | |
dc.identifier.issn | 2380-6761 | |
dc.identifier.issn | 2380-6761 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/176888 | |
dc.description.abstract | Noninvasive delivery of near-infrared light (IRL) to human tissues has been researched as a treatment for several acute and chronic disease conditions. We recently showed that use of specific IRL wavelengths, which inhibit the mitochondrial enzyme cytochrome c oxidase (COX), leads to robust neuroprotection in animal models of focal and global brain ischemia/reperfusion injury. These life-threatening conditions can be caused by an ischemic stroke or cardiac arrest, respectively, two leading causes of death. To translate IRL therapy into the clinic an effective technology must be developed that allows efficient delivery of IRL to the brain while addressing potential safety concerns. Here, we introduce IRL delivery waveguides (IDWs) which meet these demands. We employ a low-durometer silicone that comfortably conforms to the shape of the head, avoiding pressure points. Furthermore, instead of using focal IRL delivery points via fiberoptic cables, lasers, or light-emitting diodes, the distribution of the IRL across the entire area of the IDW allows uniform IRL delivery through the skin and into the brain, preventing “hot spots” and thus skin burns. The IRL delivery waveguides have unique design features, including optimized IRL extraction step numbers and angles and a protective housing. The design can be scaled to fit various treatment areas, providing a novel IRL delivery interface platform. Using fresh (unfixed) human cadavers and isolated cadaver tissues, we tested transmission of IRL via IDWs in comparison to laser beam application with fiberoptic cables. Using the same IRL output energies IDWs performed superior in comparison to the fiberoptic delivery, leading to an up to 95% and 81% increased IRL transmission for 750 and 940 nm IRL, respectively, analyzed at a depth of 4 cm into the human head. We discuss the unique safety features and potential further improvements of the IDWs for future clinical implementation. | |
dc.publisher | John Wiley & Sons, Inc. | |
dc.subject.other | infrared light | |
dc.subject.other | ischemia/reperfusion | |
dc.subject.other | light penetration | |
dc.subject.other | stroke | |
dc.subject.other | cadaver | |
dc.subject.other | waveguide | |
dc.subject.other | mitochondria | |
dc.title | Non-invasive treatment of ischemia/reperfusion injury: Effective transmission of therapeutic near-infrared light into the human brain through soft skin-conforming silicone waveguides | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Biomedical Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/176888/1/btm210496_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/176888/2/btm210496.pdf | |
dc.identifier.doi | 10.1002/btm2.10496 | |
dc.identifier.source | Bioengineering & Translational Medicine | |
dc.identifier.citedreference | Lo EH, Moskowitz MA, Jacobs TP. Exciting, radical, suicidal: how brain cells die after stroke. Stroke. 2005; 36 ( 2 ): 189 - 192. | |
dc.identifier.citedreference | Johnson CO, Nguyen M, Roth GA, et al. Global, regional, and national burden of stroke, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019; 18 ( 5 ): 439 - 458. | |
dc.identifier.citedreference | Beebe JM, Swatowski BW, Weidner WK, et al. Semiquantitative atomic force microscopy-infrared spectroscopy analysis of chemical gradients in silicone optical waveguides. ACS Appl Mater Interfaces. 2020; 12 ( 9 ): 11287 - 11295. | |
dc.identifier.citedreference | Zhang H, Zhao H, Zhao X, et al. Biocompatible light guide-assisted wearable devices for enhanced UV light delivery in deep skin. Adv Funct Mater. 2021; 31 ( 23 ): 2100576. | |
dc.identifier.citedreference | Heiskanen V, Hamblin MR. Photobiomodulation: lasers vs. light emitting diodes? Photochem Photobiol Sci. 2018; 17 ( 8 ): 1003 - 1017. | |
dc.identifier.citedreference | Chouchani ET, Pell VR, Gaude E, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014; 515 ( 7527 ): 431 - 435. | |
dc.identifier.citedreference | Kalpage HA, Wan J, Morse PT, Lee I, Hüttemann M. Brain-specific serine-47 modification of cytochrome c regulates cytochrome c oxidase activity attenuating ROS production and cell death: implications for ischemia/reperfusion injury and Akt signaling. Cells. 2020; 9 ( 8 ): 1 - 18. | |
dc.identifier.citedreference | Tsao CW, Aday AW, Almarzooq ZI, et al. Heart disease and stroke statistics-2022 update: a report from the American Heart Association. Circulation. 2022; 145 ( 8 ): e153 - e639. | |
dc.identifier.citedreference | Morse PT, Goebel DJ, Wan J, et al. Cytochrome c oxidase-modulatory near-infrared light penetration into the human brain: implications for the noninvasive treatment of ischemia/reperfusion injury. IUBMB Life. 2021; 73 ( 3 ): 554 - 567. | |
dc.identifier.citedreference | Strubakos CD, Malik M, Wider JM, et al. Non-invasive treatment with near-infrared light: a novel mechanisms-based strategy that evokes sustained reduction in brain injury after stroke. J Cereb Blood Flow Metab. 2020; 40 ( 4 ): 833 - 844. | |
dc.identifier.citedreference | Sanderson TH, Wider JM, Lee I, et al. Inhibitory modulation of cytochrome c oxidase activity with specific near-infrared light wavelengths attenuates brain ischemia/reperfusion injury. Sci Rep. 2018; 8 ( 1 ): 3481. | |
dc.identifier.citedreference | Chen AC, Arany PR, Huang YY, et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 2011; 6 ( 7 ): e22453. | |
dc.identifier.citedreference | Wharton DC, Tzagoloff A. Studies on the electron transfer system. Lvii. The near infrared absorption band of cytochrome oxidase. J Biol Chem. 1964; 239: 2036 - 2041. | |
dc.identifier.citedreference | Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999; 49 ( 1 ): 1 - 17. | |
dc.identifier.citedreference | Karu TI, Afanas’eva NI. Cytochrome c oxidase as the primary photoacceptor upon laser exposure of cultured cells to visible and near IR-range light. Dokl Akad Nauk. 1995; 342 ( 5 ): 693 - 695. | |
dc.identifier.citedreference | Hamblin MR. Photobiomodulation for traumatic brain injury and stroke. J Neurosci Res. 2018; 96 ( 4 ): 731 - 743. | |
dc.identifier.citedreference | van der Worp HB, de Haan P, Morrema E, Kalkman CJ. Methodological quality of animal studies on neuroprotection in focal cerebral ischaemia. J Neurol. 2005; 252 ( 9 ): 1108 - 1114. | |
dc.identifier.citedreference | A randomized trial of tirilazad mesylate in patients with acute stroke (RANTTAS). The RANTTAS investigators. Stroke. 1996; 27 ( 9 ): 1453 - 1458. | |
dc.identifier.citedreference | Hüttemann M, Helling S, Sanderson TH, et al. Regulation of mitochondrial respiration and apoptosis through cell signaling: cytochrome c oxidase and cytochrome c in ischemia/reperfusion injury and inflammation. Biochim Biophys Acta. 2012; 1817 ( 4 ): 598 - 609. | |
dc.identifier.citedreference | Kalpage HA, Wan J, Morse PT, et al. Cytochrome c phosphorylation: control of mitochondrial electron transport chain flux and apoptosis. Int J Biochem Cell Biol. 2020; 121: 105704. | |
dc.identifier.citedreference | Jacques SL. Optical properties of biological tissues: a review. Phys Med Biol. 2013; 58 ( 11 ): R37 - R61. | |
dc.identifier.citedreference | Esnouf A, Wright PA, Moore JC, Ahmed S. Depth of penetration of an 850nm wavelength low level laser in human skin. Acupunct Electrother Res. 2007; 32 ( 1-2 ): 81 - 86. | |
dc.identifier.citedreference | Kocheril PA, Lenz KD, Mascareñas DDL, Morales-Garcia JE, Anderson AS, Mukundan H. Portable waveguide-based optical biosensor. Biosensors. 2022; 12: 4. | |
dc.identifier.citedreference | Mittal V, Nedeljkovic M, Carpenter LG, et al. Waveguide absorption spectroscopy of bovine serum albumin in the mid-infrared fingerprint region. ACS Sens. 2019; 4 ( 7 ): 1749 - 1753. | |
dc.identifier.citedreference | Xu Z, Xie Q, Tan Z, Wu Q, Chen Y. Heat-resistant optical waveguides using new silicone-based polymers. In First Joint Symposium on Opto- and Microelectronic Devices and Circuits; 2000: 138 – 141. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.