Show simple item record

Ultrathin Nitride Ferroic Memory with Large ON/OFF Ratios for Analog In-Memory Computing

dc.contributor.authorWang, Ding
dc.contributor.authorWang, Ping
dc.contributor.authorMondal, Shubham
dc.contributor.authorHu, Mingtao
dc.contributor.authorWu, Yuanpeng
dc.contributor.authorMa, Tao
dc.contributor.authorMi, Zetian
dc.date.accessioned2023-06-01T20:51:54Z
dc.date.available2024-06-01 16:51:53en
dc.date.available2023-06-01T20:51:54Z
dc.date.issued2023-05
dc.identifier.citationWang, Ding; Wang, Ping; Mondal, Shubham; Hu, Mingtao; Wu, Yuanpeng; Ma, Tao; Mi, Zetian (2023). "Ultrathin Nitride Ferroic Memory with Large ON/OFF Ratios for Analog In-Memory Computing." Advanced Materials 35(20): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/176889
dc.description.abstractComputing in the analog regime using nonlinear ferroelectric resistive memory arrays can potentially alleviate the energy constraints and complexity/footprint challenges imposed by digital von Neumann systems. Yet the current ferroelectric resistive memories suffer from either low ON/OFF ratios/imprint or limited compatibility with mainstream semiconductors. Here, for the first time, ferroelectric and analog resistive switching in an epitaxial nitride heterojunction comprising ultrathin (≈5 nm) nitride ferroelectrics, i.e., ScAlN, with potentiality to bridge the gap between performance and compatibility is demonstrated. High ON/OFF ratios (up to 105), high uniformity, good retention, (<20% variation after > 105 s) and cycling endurance (>104) are simultaneously demonstrated in a metal/oxide/nitride ferroelectric junction. It is further demonstrated that the memristor can provide programmability to enable multistate operation and linear analogue computing as well as image processing with high accuracy. Neural network simulations based on the weight update characteristics of the nitride memory yielded an image recognition accuracy of 92.9% (baseline 96.2%) on the images from Modified National Institute of Standards and Technology. The non-volatile multi-level programmability and analog computing capability provide first-hand and landmark evidence for constructing advanced memory/computing architectures based on emerging nitride ferroelectrics, and promote homo and hybrid integrated functional edge devices beyond silicon.Ferroelectric and analog resistive switching in an ultrathin, epitaxial nitride ferroelectric heterostructure is demonstrated, showing high ON/OFF ratios, high uniformity, and good retention that enables multistate operation and linear analog computing with high accuracy. The results pave the way for constructing advanced memory/computing architectures based on emerging nitride ferroelectrics and promote homo and hybrid integrated functional edge devices beyond silicon.
dc.publisherSapporo
dc.publisherWiley Periodicals, Inc.
dc.subject.otherultrathin
dc.subject.othermemory
dc.subject.otherin-memory computing
dc.subject.otherlarge ON/OFF ratio
dc.subject.othernitride ferroelectrics
dc.subject.otherScAlN
dc.titleUltrathin Nitride Ferroic Memory with Large ON/OFF Ratios for Analog In-Memory Computing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176889/1/adma202210628-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176889/2/adma202210628_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176889/3/adma202210628.pdf
dc.identifier.doi10.1002/adma.202210628
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceP. Wang, D. Wang, S. Mondal, Z. T. Mi, Appl. Phys. Lett. 2022, 121, 023501.
dc.identifier.citedreferenceZ. Luo, Z. J. Wang, Z. Y. Guan, C. Ma, L. T. Zhao, C. C. Liu, H. Y. Sun, H. Wang, Y. Lin, X. Jin, Y. W. Yin, X. G. Li, Nat. Commun. 2022, 13, 699.
dc.identifier.citedreferenceZ. Wen, D. Wu, Adv. Mater. 2020, 32, 1904123.
dc.identifier.citedreferenceS. Datta, S. Dutta, B. Grisafe, J. Smith, S. Srinivasa, H. C. Ye, Ieee Micro 2019, 39, 8.
dc.identifier.citedreferenceJ. Hur, Y. C. Luo, N. Tasneem, A. I. Khan, S. M. Yu, Ieee T Electron Dev 2021, 68, 3176.
dc.identifier.citedreferenceS. Salahuddin, K. Ni, S. Datta, Nat. Electron. 2018, 1, 442.
dc.identifier.citedreferenceY. V. Pershin, M. Di Ventra, Neural Networks 2010, 23, 881.
dc.identifier.citedreferenceP. Y. Chen, X. C. Peng, S. M. Yu, 2017 Ieee International Electron Devices Meeting (Iedm), 2017, 6.
dc.identifier.citedreferenceP. Wang, D. Wang, S. Mondal, M. Hu, J. Liu, Z. Mi, Semicond. Sci. Technol. 2023, 38, 043002.
dc.identifier.citedreferenceP. Wang, D. Wang, N. M. Vu, T. Chiang, J. T. Heron, Z. T. Mi, Appl. Phys. Lett. 2021, 118, 223504.
dc.identifier.citedreferenceD. Wang, P. Wang, B. Y. Wang, Z. T. Mi, Appl. Phys. Lett. 2021, 119, 111902.
dc.identifier.citedreferenceM. R. Islam, N. Wolff, M. Yassine, G. Schonweger, B. Christian, H. Kohlstedt, O. Ambacher, F. Lofink, L. Kienle, S. Fichtner, Appl. Phys. Lett. 2021, 118, 232905.
dc.identifier.citedreferenceD. Drury, K. Yazawa, A. Zakutayev, B. Hanrahan, G. Brennecka, Micromachines-Basel 2022, 13, 887.
dc.identifier.citedreferenceP. Wang, D. A. Laleyan, A. Pandey, Y. Sun, Z. T. Mi, Appl. Phys. Lett. 2020, 116, 151903.
dc.identifier.citedreferenceM. T. Hardy, E. N. Jin, N. Nepal, D. S. Katzer, B. P. Downey, V. J. Gokhale, D. F. Storm, D. J. Meyer, Appl. Phys. Express 2020, 13, 065509.
dc.identifier.citedreferenceS. L. Tsai, T. Hoshii, H. Wakabayashi, K. Tsutsui, T. K. Chung, E. Y. Chang, K. Kakushima, Appl. Phys. Lett. 2021, 118, 082902.
dc.identifier.citedreferenceP. Wang, B. Wang, D. A. Laleyan, A. Pandey, Y. Wu, Y. Sun, X. Liu, Z. Deng, E. Kioupakis, Z. Mi, Appl. Phys. Lett. 2021, 118, 032102.
dc.identifier.citedreferenceD. Wang, P. Wang, S. Mondal, Y. Xiao, M. Hu, Z. Mi, Appl. Phys. Lett. 2022, 121, 042108.
dc.identifier.citedreferenceV. Garcia, M. Bibes, Nat. Commun. 2014, 5, 4289.
dc.identifier.citedreferenceB. Gil, III-Nitride Semiconductors and their modern devices, OUP Oxford, xx 2013, 18.
dc.identifier.citedreferenceH. Morkoç, Physics and Growth, John Wiley & Sons, xx 2009.
dc.identifier.citedreferenceG. Piazza, V. Felmetsger, P. Muralt, R. H. Olsson, R. Ruby, MRS Bull. 2012, 37, 1051.
dc.identifier.citedreferenceZ. Y. Zheng, L. Zhang, W. J. Song, S. R. Feng, H. Xu, J. H. Sun, S. Yang, T. Chen, J. Wei, K. J. Chen, Nat. Electron. 2021, 4, 595.
dc.identifier.citedreferenceW. E. Hoke, R. V. Chelakara, J. P. Bettencourt, T. E. Kazior, J. R. LaRoche, T. D. Kennedy, J. J. Mosca, A. Torabi, A. J. Kerr, H. S. Lee, T. Palacios, J Vac Sci Technol B 2012, 30, 02B101.
dc.identifier.citedreferenceN. Collaert, A. Alian, S. H. Chen, V. Deshpande, M. Ingels, V. Putcha, A. Sibaja-Hemandez, B. van Liempd, A. Vais, A. Vandooren, A. Walke, L. Witters, H. Yu, D. Linten, B. Parvais, P. Wambacq, N. Waldron, 2018 14th Ieee International Conference on Solid-State and Integrated Circuit Technology (Icsict), 2018, 844.
dc.identifier.citedreferenceT. E. Kazior, Philos T R Soc A 2014, 372, 20130105.
dc.identifier.citedreferenceP. Kumar, K. C. Zhu, X. Gao, S. D. Wang, M. Lanza, C. S. Thakur, npj 2D Mater. Appl. 2022, 6, 8.
dc.identifier.citedreferenceP. Wang, D. Wang, B. Wang, S. Mohanty, S. Diez, Y. Wu, Y. Sun, E. Ahmadi, Z. Mi, Appl. Phys. Lett. 2021, 119, 082101.
dc.identifier.citedreferenceX. W. Liu, D. X. Wang, K. H. Kim, K. Katti, J. Zheng, P. Musavigharavi, J. S. Miao, E. A. Stach, R. H. Olsson, D. Jariwala, Nano Lett. 2021, 21, 3753.
dc.identifier.citedreferenceX. W. Liu, J. Zheng, D. Wang, P. Musavigharavi, E. A. Stach, R. Olsson, D. Jariwala, Appl. Phys. Lett. 2021, 118, 202901.
dc.identifier.citedreferenceD. Wang, P. Wang, S. Mondal, S. Mohanty, T. Ma, E. Ahmadi, Z. T. Mi, Adv. Electron. Mater. 2022, 8, 2200005.
dc.identifier.citedreferenceX. W. Liu, J. H. Ting, Y. F. He, M. M. A. Fiagbenu, J. F. Zheng, D. X. Wang, J. Frost, P. Musavigharavi, G. Esteves, K. Kisslinger, S. B. Anantharaman, E. A. Stach, R. H. Olsson, D. Jariwala, Nano Lett. 2022.
dc.identifier.citedreferenceB. Max, M. Hoffmann, S. Slesazeck, T. Mikolajick, Proc Eur S-State Dev 2018, 142.
dc.identifier.citedreferenceR. Mizutani, S. Yasuoka, T. Shiraishi, T. Shimizu, M. Uehara, H. Yamada, M. Akiyama, O. Sakata, H. Funakubo, Appl. Phys. Express 2021, 14, 105501.
dc.identifier.citedreferenceT. P. Ma, J. P. Han, Ieee Electr Device L 2002, 23, 386.
dc.identifier.citedreferenceJ. Muller, T. S. Boscke, U. Schroder, S. Mueller, D. Brauhaus, U. Bottger, L. Frey, T. Mikolajick, Nano Lett. 2012, 12, 4318.
dc.identifier.citedreferenceY. C. Luo, J. Hur, S. M. Yu, Ieee T Nanotechnol 2021, 20, 243.
dc.identifier.citedreferenceS. Ricci, P. Mannocci, M. Farronato, S. Hashemkhani, D. Ielmini, Adv Intell Syst-Ger 2022, 4.
dc.identifier.citedreferenceA. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur, M. Bibes, A. Barthelemy, J. Grollier, Nat. Mater. 2012, 11, 860.
dc.identifier.citedreferenceP. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A. P. Baddorf, S. V. Kalinin, Science 2009, 324, 1421.
dc.identifier.citedreferenceD. Ielmini, H. S. P. Wong, Nat. Electron. 2018, 1, 333.
dc.identifier.citedreferenceW. Haensch, T. Gokmen, R. Puri, P Ieee 2019, 107, 108.
dc.identifier.citedreferenceW. Q. Zhang, B. Gao, J. S. Tang, P. Yao, S. M. Yu, M. F. Chang, H. J. Yoo, H. Qian, H. Q. Wu, Nat. Electron. 2020, 3, 371.
dc.identifier.citedreferenceM. A. Zidan, J. P. Strachan, W. D. Lu, Nat. Electron. 2018, 1, 22.
dc.identifier.citedreferenceQ. F. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309.
dc.identifier.citedreferenceM. Hu, C. E. Graves, C. Li, Y. N. Li, N. Ge, E. Montgomery, N. Davila, H. Jiang, R. S. Williams, J. J. S. Yang, Q. F. Xia, J. P. Strachan, Adv. Mater. 2018, 30, 1705914.
dc.identifier.citedreferenceA. Sebastian, M. L. Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Nat. Nanotechnol. 2020, 15, 529.
dc.identifier.citedreferenceZ. R. Wang, C. Li, W. H. Song, M. Y. Rao, D. Belkin, Y. N. Li, P. Yan, H. Jiang, P. Lin, M. Hu, J. P. Strachan, N. Ge, M. Barnell, Q. Wu, A. G. Bartos, Q. R. Qiu, R. S. Williams, Q. F. Xia, J. J. Yang, Nat. Electron. 2019, 2, 115.
dc.identifier.citedreferenceP. Yao, H. Q. Wu, B. Gao, S. B. Eryilmaz, X. Y. Huang, W. Q. Zhang, Q. T. Zhang, N. Deng, L. P. Shi, H. S. P. Wong, H. Qian, Nat. Commun. 2017, 8, 15199.
dc.identifier.citedreferenceS. Ambrogio, P. Narayanan, H. Y. Tsai, R. M. Shelby, I. Boybat, C. di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi, G. W. Burr, Nature 2018, 558, 60.
dc.identifier.citedreferenceM. L. Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma, C. Bekas, A. Curioni, E. Eleftheriou, Nat. Electron. 2018, 1, 246.
dc.identifier.citedreferenceS. Jung, H. Lee, S. Myung, H. Kim, S. K. Yoon, S. W. Kwon, Y. Ju, M. Kim, W. Yi, S. Han, B. Kwon, B. Seo, K. Lee, G. H. Koh, K. Lee, Y. Song, C. Choi, D. Ham, S. J. Kim, Nature 2022, 601, 211.
dc.identifier.citedreferenceA. D. Patil, H. C. Hua, S. Gonugondla, M. G. Kang, N. R. Shanbhag, 2019 Ieee International Symposium on Circuits and Systems (Iscas), Sapporo, Japan 2019, pp 1 – 5, https://doi.org/10.1109/ISCAS.2019.8702206.
dc.identifier.citedreferenceR. Berdan, T. Marukame, K. Ota, M. Yamaguchi, M. Saitoh, S. Fujii, J. Deguchi, Y. Nishi, Nat. Electron. 2020, 3, 259.
dc.identifier.citedreferenceT. Francois, L. Grenouillet, J. Coignus, P. Blaise, C. Carabasse, N. Vaxelaire, T. Magis, F. Aussenac, V. Loup, C. Pellissier, S. Slesazeck, V. Havel, C. Richter, A. Makosiej, B. Giraud, E. T. Breyer, M. Materano, P. Chiquet, M. Bocquet, E. Nowak, U. Schroeder, F. Gaillard, Int El Devices Meet 2019, 15.
dc.identifier.citedreferenceA. I. Khan, A. Keshavarzi, S. Datta, Nat. Electron. 2020, 3, 588.
dc.identifier.citedreferenceS. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi, M. Saitoh, 2016 Ieee Symposium on Vlsi Technology, Honolulu, HI, USA 2016, pp 1 – 2, https://doi.org/10.1109/VLSIT.2016.7573413.
dc.identifier.citedreferenceM. H. Park, Y. H. Lee, T. Mikolajick, U. Schroeder, C. S. Hwang, MRS Commun. 2018, 8, 795.
dc.identifier.citedreferenceJ. Bouaziz, P. R. Romeo, N. Baboux, B. Vilquin, Appl. Phys. Lett. 2021, 118, 082901.
dc.identifier.citedreferenceH. Mulaosmanovic, E. T. Breyer, S. Dünkel, S. Beyer, T. Mikolajick, S. Slesazeck, Nanotechnology 2021, 32, 502002.
dc.identifier.citedreferenceS. Fichtner, N. Wolff, F. Lofink, L. Kienle, B. Wagner, J. Appl. Phys. 2019, 125, 114103.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.