Show simple item record

Infectivity of the parasite Metschnikowia bicuspidata is decreased by time spent as a transmission spore, but exposure to phycotoxins in the water column has no effect

dc.contributor.authorSánchez, Kristel F.
dc.contributor.authorZhong, Baili
dc.contributor.authorAgudelo, Jorge A.
dc.contributor.authorDuffy, Meghan A.
dc.date.accessioned2023-06-01T20:52:00Z
dc.date.available2024-07-01 16:51:58en
dc.date.available2023-06-01T20:52:00Z
dc.date.issued2023-06
dc.identifier.citationSánchez, Kristel F. ; Zhong, Baili; Agudelo, Jorge A.; Duffy, Meghan A. (2023). "Infectivity of the parasite Metschnikowia bicuspidata is decreased by time spent as a transmission spore, but exposure to phycotoxins in the water column has no effect." Freshwater Biology (6): 1020-1030.
dc.identifier.issn0046-5070
dc.identifier.issn1365-2427
dc.identifier.urihttps://hdl.handle.net/2027.42/176891
dc.description.abstractTransmission from one host to another is a crucial component of parasite fitness. For some aquatic parasites, transmission occurs via a free-living stage that spends time in the water, awaiting an encounter with a new host. These parasite transmission stages can be impacted by biotic and abiotic factors that influence the parasite’s ability to successfully infect or grow in a new host.Here we tested whether time spent in the water column and/or exposure to common cyanobacterial toxins impacted parasite transmission stages. More specifically, we tested whether the infectivity, within host growth, and virulence of the fungal parasite Metschnikowia bicuspidata changed as a result of time spent in the water or from exposure to cyanotoxins in the water column. We exposed parasite transmission spores to different levels of one of two ecologically important cyanotoxins, microcystin-LR and anatoxin-a, and factorially manipulated the amount of time spores were incubated in water. We removed the toxins and used those same spores to infect one genotype of the common lake zooplankton Daphnia dentifera.We found that cyanotoxins did not impact parasite fitness (infection prevalence and spore yield per infected host) or virulence (host lifetime reproduction and survivorship) at the tested concentrations (10 and 30 μg/L). However, we found that spending longer as a transmission spore decreased a spore’s chances for successful infection: spores that were only incubated for 24 hr infected approximately 75% of exposed hosts, whereas spores incubated for 10 days infected less than 50% of exposed hosts.We also found a negative relationship between the final spore yield from infected hosts and the proportion of hosts that became infected. In treatments where spores spent longer in the water column prior to encountering a host, infection prevalence was lower (indicating lower per spore infectivity), but each infected host yielded more spores at the end of infection. We hypothesise that this pattern may result from intraspecific parasite competition within the host.Overall, these results suggest that transmission spores of this parasite are not strongly influenced by cyanotoxins in the water column, but that other aspects of spending time in the water strongly influence parasite fitness.
dc.publisherNational Center for Biotechnology Information
dc.publisherWiley Periodicals, Inc.
dc.subject.othercyanobacteria
dc.subject.otherDaphnia
dc.subject.otherhost–parasite
dc.subject.othermicrocystin
dc.subject.otheranatoxin
dc.titleInfectivity of the parasite Metschnikowia bicuspidata is decreased by time spent as a transmission spore, but exposure to phycotoxins in the water column has no effect
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176891/1/fwb14082_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176891/2/fwb14082.pdf
dc.identifier.doi10.1111/fwb.14082
dc.identifier.sourceFreshwater Biology
dc.identifier.citedreferenceMoura, D. S., Pestana, C. J., Moffat, C. F., Hui, J., Irvine, J. T., Edwards, C., & Lawton, L. A. ( 2022 ). Adsorption of cyanotoxins on polypropylene and polyethylene terephthalate: Microplastics as vector of eight microcystin analogues. Environmental Pollution, 303, 119135. https://doi.org/10.1016/j.envpol.2022.119135
dc.identifier.citedreferenceLachance, M.-A., Miranda, M., Miller, M. W., & Phaff, H. J. ( 1976 ). Dehiscence and active spore release in pathogenic strains of the yeastMetschnikowia bicuspidatavar.Australis: Possible predatory implication. Canadian Journal of Microbiology, 22, 1756 – 1761.
dc.identifier.citedreferenceLafferty, K. D., & Holt, R. D. ( 2003 ). How should environmental stress affect the population dynamics of disease? Ecology Letters, 6, 654 – 664.
dc.identifier.citedreferenceLandsberg, J. H. ( 2002 ). The effects of harmful algal blooms on aquatic organisms. Reviews in Fisheries Science, 10, 1064 – 1262. https://doi.org/10.1080/20026491051695
dc.identifier.citedreferenceLassudrie, M., Hégaret, H., Wikfors, G. H., & da Silva, P. M. ( 2020 ). Effects of marine harmful algal blooms on bivalve cellular immunity and infectious diseases: A review. Developmental and Comparative Immunology, 108, 103660. https://doi.org/10.1016/j.dci.2020.103660
dc.identifier.citedreferenceLeflaive, J., & Ten-Hage, L. ( 2007 ). Algal and cyanobacterial secondary metabolites in freshwaters: A comparison of allelopathic compounds and toxins. Freshwater Biology, 52, 199 – 214. https://doi.org/10.1111/j.1365-2427.2006.01689.x
dc.identifier.citedreferenceMalone, L. A., Gatehouse, H. S., & Tregidga, E. L. ( 2001 ). Effects of time, temperature, and honey on Nosema apis (Microsporidia: Nosematidae), a parasite of the honeybee, Apis mellifera (Hymenoptera: Apidae). Journal of Invertebrate Pathology, 77, 258 – 268. https://doi.org/10.1006/jipa.2001.5028
dc.identifier.citedreferenceManzi, F., Agha, R., Lu, Y., Ben-Ami, F., & Wolinska, J. ( 2019 ). Temperature and host diet jointly influence the outcome of infection in a Daphnia-fungal parasite system. Freshwater Biology, 65, 757 – 767. https://doi.org/10.1111/fwb.13464
dc.identifier.citedreferenceManzi, F., Agha, R., Mühlenhaupt, M., & Wolinska, J. ( 2022 ). Prior exposure of a fungal parasite to cyanobacterial extracts does not impair infection of its Daphnia host. Hydrobiologia, 849, 2731 – 2744. https://doi.org/10.1007/s10750-022-04889-7
dc.identifier.citedreferenceMetschnikoff, V. E. ( 1884 ). Ueber eine Sprosspilzkrankheit der Daphnien Beitrag zur Lehre uber den Kampf der Phagocyten gegen Krankheitserreger. Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin, 96, 177 – 195. https://doi.org/10.1007/BF02361555
dc.identifier.citedreferenceOstensvik, O., Skulberg, O. M., Underdal, B., & Hormazabal, V. ( 2002 ). Antibacterial properties of extracts from selected planktonic freshwater cyanobacteria – A comparative study of bacterial bioassays. Journal of Applied Microbiology, 84, 1117 – 1124.
dc.identifier.citedreferenceOverholt, E. P., Hall, S. R., Williamson, C. E., Meikle, C. K., Duffy, M. A., & Cáceres, C. E. ( 2012 ). Solar radiation decreases parasitism in Daphnia. Ecology Letters, 15, 47 – 54. https://doi.org/10.1111/j.1461-0248.2011.01707.x
dc.identifier.citedreferencePark, H. D., Kim, B., Kim, E., & Okino, T. ( 1998 ). Hepatotoxic microcystins and neurotoxic anatoxin-a in cyanobacterial blooms from Korean lakes. Environmental Toxicology and Water Quality, 13, 225 – 234. https://doi.org/10.1002/(SICI)1098-2256(1998)13:3<225::AID-TOX4>3.0.CO;2-9
dc.identifier.citedreferencePawlik-Skowrońska, B., Skowroński, T., Pirszel, J., & Adamczyk, A. ( 2004 ). Relationship between cyanobacterial bloom composition and anatoxin-A and microcystin occurrence in the eutrophic dam reservoir (se Poland). Polish Journal of Ecology, 52, 479 – 490.
dc.identifier.citedreferencePawlik-Skowrońska, B., Toporowska, M., & Mazur-Marzec, H. ( 2019 ). Effects of secondary metabolites produced by different cyanobacterial populations on the freshwater zooplankters Brachionus calyciflorus and Daphnia pulex. Environmental Science and Pollution Research, 26, 11793 – 11804. https://doi.org/10.1007/s11356-019-04543-1
dc.identifier.citedreferencePenczykowski, R. M., Lemanski, B. C. P., Sieg, R. D., Hall, S. R., Housley, O. J., Kubanek, J., & Duffy, M. A. ( 2014 ). Poor resource quality lowers transmission potential by changing foraging behaviour. Functional Ecology, 28, 1245 – 1255. https://doi.org/10.1111/1365-2435.12238
dc.identifier.citedreferenceSánchez, K. F., Huntley, N., Duffy, M. A., & Hunter, M. D. ( 2019 ). Toxins or medicines? Phytoplankton diets mediate host and parasite fitness in a freshwater system. Proceedings of the Royal Society B: Biological Sciences, 286, 20182231. https://doi.org/10.1098/rspb.2018.2231
dc.identifier.citedreferenceShaw, C. L. ( 2019 ). Drivers of epidemic timing and size in a natural aquatic system. University of Michigan.
dc.identifier.citedreferenceShaw, C. L., Overholt, E., Williamson, C., Cáceres, C. E., Hall, S. R., & Duffy, M. A. ( 2020 ). Shedding light on environmentally transmitted parasites: Lighter conditions within lakes restrict epidemic size. Ecology, 101, e03168. https://doi.org/10.1002/ECY.3168
dc.identifier.citedreferenceStewart Merrill, T. E., & Cáceres, C. E. ( 2018 ). Within-host complexity of a plankton-parasite interaction. Ecology, 99, 2864 – 2867. https://doi.org/10.1002/ecy.2483
dc.identifier.citedreferenceTellenbach, C., Tardent, N., Pomati, F., Keller, B., Hairston, N. G., Wolinska, J., & Spaak, P. ( 2016 ). Cyanobacteria facilitate parasite epidemics in daphnia. Ecology, 97, 3422 – 3432. https://doi.org/10.1002/ecy.1576
dc.identifier.citedreferenceTessier, A. J., & Woodruff, P. ( 2002 ). Cryptic trophic cascade along a gradient of lake size. Ecology, 83, 1263 – 1270.
dc.identifier.citedreferenceThieltges, D. W., Amundsen, P.-A., Hechinger, R. F., Johnson, P. T. J., Lafferty, K. D., Mouritsen, K. N., Preston, D. L., Reise, K., Zander, C. D., & Poulin, R. ( 2013 ). Parasites as prey in aquatic food webs: Implications for predator infection and parasite transmission. Oikos, 122, 1473 – 1482. https://doi.org/10.1111/j.1600-0706.2013.00243.x
dc.identifier.citedreferenceVasemagi, A., Visse, M., & Kisand, V. ( 2017 ). Effect of environmental factors and al emerging parasitic disease on gut microbiome of wild salmonid fish. mSphere, 2, e00418–17. https://doi.org/10.1128/mSphere.00418-17
dc.identifier.citedreferenceVolk, R. B., & Furkert, F. H. ( 2006 ). Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiological Research, 161, 180 – 186. https://doi.org/10.1016/j.micres.2005.08.005
dc.identifier.citedreferenceEbert, D. ( 2005 ). Ecology, epidemiology, and evolution of parasitism in Daphnia. National Center for Biotechnology Information.
dc.identifier.citedreferenceDuperron, S., Halary, S., Habiballah, M., Gallet, A., Huet, H., Duval, C., Bernard, C., & Marie, B. ( 2019 ). Response of fish gut microbiota to toxin-containing cyanobacterial extracts: A microcosm study on the medaka ( Oryzias latipes ). Environmental Science & Technology Letters, 6, 341 – 347. https://doi.org/10.1021/acs.estlett.9b00297
dc.identifier.citedreferenceAmigó, J. M., Gracia, M. P., Rius, M., Salvadó, H., Maillo, P. A., & Vivarés, C. P. ( 1996 ). Longevity and effects of temperature an the viability and polar-tube extrusion of spores of Glugea stephani, a microsporidian parasite of commercial flatfish. Parasitology Research, 82, 211 – 214. https://doi.org/10.1007/s004360050097
dc.identifier.citedreferenceAndersen, N. G., Lorenzen, E., Boutrup, T. S., Hansen, P. J., & Lorenzen, N. ( 2016 ). Sublethal concentrations of ichthyotoxic alga Prymnesium parvum affect rainbow trout susceptibility to viral haemorrhagic septicaemia virus. Diseases of Aquatic Organisms, 117, 187 – 195. https://doi.org/10.3354/dao02946
dc.identifier.citedreferenceAuld, S. K. J. R., Hall, S. R., & Duffy, M. A. ( 2012 ). Epidemiology of a Daphnia-multiparasite system and its implications for the red queen. PLoS One, 7, e39564. https://doi.org/10.1371/journal.pone.0039564
dc.identifier.citedreferenceAuld, S. K. J. R., Hall, S. R., Ochs, J. H., Sebastian, M., & Duffy, M. A. ( 2014 ). Predators and patterns of within-host growth can mediate both among-host competition and evolution of transmission potential of parasites. The American Naturalist, 184, S77 – S90. https://doi.org/10.1086/676927
dc.identifier.citedreferenceAuld, S. K. J. R., Searle, C. L., & Duffy, M. A. ( 2017 ). Parasite transmission in a natural multihost-multiparasite community. Philosophical Transactions of the Royal Society, B: Biological Sciences, 372, 20160097. https://doi.org/10.1098/rstb.2016.0097
dc.identifier.citedreferenceBorowitzka, M. A. ( 1995 ). Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 7, 3 – 15. https://doi.org/10.1007/BF00003544
dc.identifier.citedreferenceBrookes, J. D., Antenucci, J., Hipsey, M., Burch, M. D., Ashbolt, N. J., & Ferguson, C. ( 2004 ). Fate and transport of pathogens in lakes and reservoirs. Environment International, 30, 741 – 759. https://doi.org/10.1016/j.envint.2003.11.006
dc.identifier.citedreferenceCáceres, C. E., Hall, S. R., Duffy, M. A., Tessier, A. J., Helmle, C., & Macintyre, S. ( 2006 ). Physical structure of lakes constrains epidemics in daphnia populations. Ecology, 87, 1438 – 1444.
dc.identifier.citedreferenceChristensen, V. G., & Khan, E. ( 2020 ). Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. Science of the Total Environment, 736, 139515. https://doi.org/10.1016/j.scitotenv.2020.139515
dc.identifier.citedreferenceCodreanu, R., & Codreanu-Balcescu, D. ( 1981 ). On two Metschnikowia yeast species producing infections in Daphnia magna and Artemia salina (Crustacea, Phyllopoda) from Romania. Journal of Invertebrate Pathology, 37, 22 – 27.
dc.identifier.citedreferenceCoopman, M., Muylaert, K., Lange, B., Reyserhove, L., & Decaestecker, E. ( 2014 ). Context dependency of infectious disease: The cyanobacterium Microcystis aeruginosa decreases white bacterial disease in Daphnia magna. Freshwater Biology, 59, 714 – 723. https://doi.org/10.1111/fwb.12420
dc.identifier.citedreferenceDecaestecker, E., Lefever, C., De Meester, L., & Ebert, D. ( 2004 ). Haunted by the past: Evidence for dormant stage banks of microparasites and epibionts of Daphnia. Limnology and Oceanography, 49, 1355 – 1364. https://doi.org/10.4319/lo.2004.49.4_part_2.1355
dc.identifier.citedreferenceDeMott, W. R., Zhang, Q., & Carmichael, W. W. ( 1991 ). Effects of toxic cyanobacteria and purified toxins on the survival and feeeding of a copepod and three species of Daphnia. Limnology and Oceanography, 36, 1346 – 1357.
dc.identifier.citedreferenceDuffy, M. A., & Hunsberger, K. K. ( 2019 ). Infectivity is influenced by parasite spore age and exposure to freezing: Do shallow waters provide Daphnia a refuge from some parasites? Journal of Plankton Research, 41, 12 – 16. https://doi.org/10.1093/plankt/fby046
dc.identifier.citedreferenceDuffy, M. A., Ochs, J. H., Penczykowski, R. M., Civitello, D. J., Klausmeier, C. A., & Hall, S. R. ( 2012 ). Size and parasite-driven evolution. Science, 335, 1636 – 1638.
dc.identifier.citedreferenceDuffy, M. A., & Sivars-Becker, L. ( 2007 ). Rapid evolution and ecological host-parasite dynamics. Ecology Letters, 10, 44 – 53. https://doi.org/10.1111/j.1461-0248.2006.00995.x
dc.identifier.citedreferenceEbert, D., Zschokke-Rohringer, C. D., & Hans, J. C. ( 2000 ). Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Ecology, 122, 200 – 209.
dc.identifier.citedreferenceHa, J. H., Hidaka, T., & Tsuno, H. ( 2009 ). Quantification of toxic microcystis and evaluation of its dominance ratio in blooms using real-time PCR. Environmental Science and Technology, 43, 812 – 818. https://doi.org/10.1021/es801265f
dc.identifier.citedreferenceHall, S. R., Smyth, R., Becker, C. R., Duffy, M. A., Knight, C. J., MacIntyre, S., Tessier, A. J., & Cáceres, C. E. ( 2010 ). Why are Daphnia in some lakes sicker? Disease ecology, habitat structure, and the plankton. Bioscience, 60, 363 – 375. https://doi.org/10.1525/bio.2010.60.5.6
dc.identifier.citedreferenceHallmann, J., & Sikora, R. A. ( 1996 ). Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. European Journal of Plant Pathology, 102, 155 – 162.
dc.identifier.citedreferenceHarvell, D., Aronson, R., Baron, N., Connell, J., Dobson, A., Ellner, S., Gerber, L., Kim, K., Kuris, A., McCallum, H., Lafferty, K., McKay, B., Porter, J., Pascual, M., Smith, G., Sutherland, K., & Ward, J. ( 2004 ). The rising tide of ocean diseases: Unsolved problems and research priorities. Frontiers in Ecology and the Environment, 2, 375 – 382.
dc.identifier.citedreferenceHeagle, A. S. ( 1973 ). Interactions between air pollutants and plant parasites. Annual Review of Phytopathology, 11, 365 – 388. https://doi.org/10.1146/annurev.py.11.090173.002053
dc.identifier.citedreferenceHuisman, J., Codd, G. A., Paerl, H. W., Ibelings, B. W., Verspagen, J. M. H., & Visser, P. M. ( 2018 ). Cyanobacterial blooms. Nature Reviews Microbiology, 16, 471 – 483. https://doi.org/10.1038/s41579-018-0040-1
dc.identifier.citedreferenceHyenstrand, P., Metcalf, J., Beattie, K., & Codd, G. A. ( 2001 ). Effects of adsorption to plastics and solvent conditions in the analysis of the cyanobacterial toxin microcystin-LR by high performance liquid chromatography. Water Research, 35, 3508 – 3511. https://doi.org/10.1016/S0043-1354(01)00068-9
dc.identifier.citedreferenceIbelings, B. W., Bruning, K., de Jonge, J., Wolfstein, K., Pires, L. M. D., Postma, J., & Burger, T. ( 2005 ). Distribution of microcystins in a Lake Foodweb: No evidence for biomagnification. Microbial Ecology, 49, 487 – 500. https://doi.org/10.1007/s00248-004-0014-x
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.