Show simple item record

Reversible Thermochromic Bismuth Iodide Enabled by Self-Adjustment

dc.contributor.authorWen, Rui
dc.contributor.authorWang, Yanyan
dc.contributor.authorMa, Xinjie
dc.contributor.authorYan, Yikun
dc.contributor.authorMa, Qi
dc.contributor.authorGao, Jinpeng
dc.contributor.authorSun, Huaming
dc.contributor.authorHuang, Hao
dc.contributor.authorGao, Ziwei
dc.date.accessioned2023-06-01T20:52:54Z
dc.date.available2024-06-01 16:52:51en
dc.date.available2023-06-01T20:52:54Z
dc.date.issued2023-05
dc.identifier.citationWen, Rui; Wang, Yanyan; Ma, Xinjie; Yan, Yikun; Ma, Qi; Gao, Jinpeng; Sun, Huaming; Huang, Hao; Gao, Ziwei (2023). "Reversible Thermochromic Bismuth Iodide Enabled by Self-Adjustment." Advanced Optical Materials 11(9): n/a-n/a.
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/2027.42/176902
dc.description.abstractLight-harvesting materials with dynamical management of light transmittance hold great promise in smart photovoltaics (PV). Here, a novel organic–inorganic halide, MVBi2I8 (MV = methyl viologen cation), exhibiting reversible thermochromism and constant bandgap of ≈1.65 eV over a wide temperature range of 77–453 K, is presented as a candidate. The compound consists of 0D (Bi4I16)4– clusters and MV2+ cations. And the adjacent (Bi4I16)4– clusters are in touch with each other, forming a 3D interaction for the inorganic part. The experimental and theoretical studies reveal that the ionic and covalent interactions in the crystal undergo a self-adjusting process in response to temperature changes. The self-adjustment and electron transfer between inorganic clusters and organic cations enable excellent reversible thermochromism and constant narrow bandgaps over a wide temperature range, which is expected for smart PV windows integrated with information displays and potentially other technologies.A novel organic–inorganic halide, MVBi2I8, is presented as a light-harvesting candidate for smart photovoltaic windows for its reversible thermochromism and constant bandgap of ≈1.65 eV from 77 to 453 K. The self-adjustment and electron transfer between inorganic clusters and organic cations were demonstrated to give it such unique properties.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersmart photovoltaics
dc.subject.otherthermochromism
dc.subject.otherbandgaps
dc.subject.otherhybrid halides
dc.subject.otherself-adjustment
dc.titleReversible Thermochromic Bismuth Iodide Enabled by Self-Adjustment
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176902/1/adom202203148.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176902/2/adom202203148-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/176902/3/adom202203148_am.pdf
dc.identifier.doi10.1002/adom.202203148
dc.identifier.sourceAdvanced Optical Materials
dc.identifier.citedreferencea) D. Ghosh, D. Acharya, L. Zhou, W. Nie, O. V. Prezhdo, S. Tretiak, A. J. Neukirch, J. Phys. Chem. Lett. 2019, 10, 5000; b) H. Fu, C. Jiang, C. Luo, H. Lin, H. Peng, Eur. J. Inorg. Chem. 2021, 2021, 4984; c) B. Sun, X. F. Liu, X. Y. Li, Y. Cao, Z. Yan, L. Fu, N. Tang, Q. Wang, X. Shao, D. Yang, H. L. Zhang, Angew. Chem., Int. Ed. 2020, 59, 203; d) Y. Ke, J. Chen, G. Lin, S. Wang, Y. Zhou, J. Yin, P. S. Lee, Y. Long, Adv. Energy Mater. 2019, 9, 1902066; e) W. Zhang, Z. Sun, J. Zhang, S. Han, C. Ji, L. Li, M. Hong, J. Luo, J. Mater. Chem. C 2017, 5, 9967.
dc.identifier.citedreferencea) R. Baetens, B. P. Jelle, A. Gustavsen, Sol. Energy Mater. Sol. Cells 2010, 94, 87; b) A. Llordés, G. Garcia, J. Gazquez, D. J. Milliron, Nature 2013, 500, 323; c) G. Cai, J. Wang, P. S. Lee, Acc. Chem. Res. 2016, 49, 1469; d) Y. Ke, C. Zhou, Y. Zhou, S. Wang, S. H. Chan, Y. Long, Adv. Funct. Mater. 2018, 28, 1800113; e) H. Khandelwal, A. P. H. J. Schenning, M. G. Debije, Adv. Energy Mater. 2017, 7, 1602209; f) Y. Zhang, C. Y. Tso, J. S. Iñigo, S. Liu, H. Miyazaki, C. Y. H. Chao, K. M. Yu, Appl. Energy 2019, 254, 113690.
dc.identifier.citedreferencea) R. G. Lin, G. Xu, G. Lu, M. S. Wang, P. X. Li, G. C. Guo, Inorg. Chem. 2014, 53, 5538; b) T. M. Bockman, J. K. Kochi, J. Org. Chem. 1990, 55, 4127.
dc.identifier.citedreferencea) A. García-Fernández, I. Marcos-Cives, C. Platas-Iglesias, S. Castro-García, D. Vázquez-García, A. Fernández, M. Sánchez-Andújar, Inorg. Chem. 2018, 57, 7655; b) J. C. Liu, W. Q. Liao, P. F. Li, Y. Y. Tang, X. G. Chen, X. J. Song, H. Y. Zhang, Y. Zhang, Y. M. You, R. G. Xiong, Angew. Chem., Int. Ed. 2020, 59, 3495.
dc.identifier.citedreferencea) B. Yang, X. Mao, F. Hong, W. Meng, Y. Tang, X. Xia, S. Yang, W. Deng, K. Han, J. Am. Chem. Soc. 2018, 140, 17001; b) S. Wang, L. Li, W. Weng, C. Ji, X. Liu, Z. Sun, W. Lin, M. Hong, J. Luo, J. Am. Chem. Soc. 2020, 142, 55.
dc.identifier.citedreferencea) W. Bi, N. Leblanc, N. Mercier, P. Auban-Senzier, C. Pasquier, Chem. Mater. 2009, 21, 4099; b) N. Leblanc, W. Bi, N. Mercier, P. Auban-Senzier, C. Pasquier, Inorg. Chem. 2010, 49, 5824; c) Q. Pan, M. Sun, C. Zhang, L. Li, H. Liu, K. Li, H. Li, S. Zang, Chem. Commun. 2021, 57, 11394.
dc.identifier.citedreferenceN. Jordão, L. Cabrita, F. Pina, L. C. Branco, Chem. - Eur. J. 2014, 20, 3982.
dc.identifier.citedreferenceC. Sun, M. S. Wang, P. X. Li, G. C. Guo, Angew. Chem., Int. Ed. 2017, 56, 554;
dc.identifier.citedreferencea) L. Yao, G. Niu, L. Yin, X. Du, Y. Lin, X. Den, J. Zhang, J. Tang, J. Mater. Chem. C 2020, 8, 1239; b) M.-Q. Li, Y.-Q. Hu, L.-Y. Bi, H.-L. Zhang, Y. Wang, Y.-Z. Zheng, Chem. Mater. 2017, 29, 5463; c) L.-Y. Bi, Y.-Q. Hu, M.-Q. Li, T.-L. Hu, H.-L. Zhang, X.-T. Yin, W.-X. Que, M. S. Lassoued, Y.-Z. Zheng, J. Mater. Chem. A 2019, 7, 19662.
dc.identifier.citedreferenceY. Wang, R. Wen, Y. Liu, L. Y. Bi, M. Yang, H. Sun, Y. Z. Zheng, G. Zhang, Z. Gao, ChemSusChem 2020, 13, 2753.
dc.identifier.citedreferencea) Y. Shi, Z. Ma, D. Zhao, Y. Chen, Y. Cao, K. Wang, G. Xiao, B. Zou, J. Am. Chem. Soc. 2019, 141, 6504; b) C. Ji, S. Wang, L. Li, Z. Sun, M. Hong, J. Luo, Adv. Funct. Mater. 2019, 29, 1805038; c) K. Tao, Y. Li, C. Ji, X. Liu, Z. Wu, S. Han, Z. Sun, J. Luo, Chem. Mater. 2019, 31, 5927; d) R. Wen, X. Ma, K. Zhang, X. Zhang, Q. Gu, H. Sun, Y. Jian, G. Zhang, Y. Wang, Z. Gao, Inorg. Chem. 2022, 61, 8521; e) N. Mercier, N. Louvain, W. Bi, CrystEngComm 2009, 11, 720.
dc.identifier.citedreferencea) W. Zhang, X. Ji, B. J. Peng, S. Che, F. Ge, W. Liu, M. Al-Hashimi, C. Wang, L. Fang, Adv. Funct. Mater. 2019, 30, 1906463; b) Y. Fang, L. Zhang, L. Wu, J. Yan, Y. Lin, K. Wang, W. L. Mao, B. Zou, Angew. Chem., Int. Ed. 2019, 58, 15249.
dc.identifier.citedreferenceV. R. Shayapov, A. N. Usoltsev, S. A. Adonin, M. N. Sokolov, D. G. Samsonenko, V. P. Fedin, New J. Chem. 2019, 43, 3927.
dc.identifier.citedreferenceW. Ning, X. G. Zhao, J. Klarbring, S. Bai, F. Ji, F. Wang, S. I. Simak, Y. Tao, X. M. Ren, L. Zhang, W. Huang, I. A. Abrikosov, F. Gao, Adv. Funct. Mater. 2019, 29, 1807375.
dc.identifier.citedreferenceA. Babayigit, A. Ethirajan, M. Muller, B. Conings, Nat. Mater. 2016, 15, 247.
dc.identifier.citedreferencea) M. Wojtaś, R. Jakubas, J. Baran, Vib. Spectrosc. 2005, 39, 23; b) S. Öz, J.-C. Hebig, E. Jung, T. Singh, A. Lepcha, S. Olthof, F. Jan, Y. Gao, R. German, P. H. M. van Loosdrecht, K. Meerholz, T. Kirchartz, S. Mathur, Sol. Energy Mater. Sol. Cells 2016, 158, 195; c) S. M. Jain, D. Phuyal, M. L. Davies, M. Li, B. Philippe, C. De Castro, Z. Qiu, J. Kim, T. Watson, W. C. Tsoi, O. Karis, H. Rensmo, G. Boschloo, T. Edvinsson, J. R. Durrant, Nano Energy 2018, 49, 614.
dc.identifier.citedreferenceH. Yoshikawa, S.-i. Nishikiori, T. Watanabe, T. Ishida, G. Watanabe, M. Murakami, K. Suwinska, R. Luboradzki, J. Lipkowski, J. Chem. Soc., Dalton Trans. 2002, 1907.
dc.identifier.citedreferenceJ. Lin, M. Lai, L. Dou, C. S. Kley, H. Chen, F. Peng, J. Sun, D. Lu, S. A. Hawks, C. Xie, F. Cui, A. P. Alivisatos, D. T. Limmer, P. Yang, Nat. Mater. 2018, 17, 261.
dc.identifier.citedreferencea) M. Grätzel, Nat. Mater. 2014, 13, 838; b) X. Li, D. Q. Bi, C. Y. Yi, J. D. Décoppet, J. S. Luo, S. M. Zakeeruddin, A. Hagfeldt, M. Grätzel, Science 2016, 353, 58.
dc.identifier.citedreferencea) Z. Ma, Z. Liu, S. Lu, L. Wang, X. Feng, D. Yang, K. Wang, G. Xiao, L. Zhang, S. A. T. Redfern, B. Zou, Nat. Commun. 2018, 9, 4506; b) X. Jing, D. Zhou, R. Sun, Y. Zhang, Y. Li, X. Li, Q. Li, H. Song, B. Liu, Adv. Funct. Mater. 2021, 31, 2100930; c) J. Di, L. Li, Q. Wang, J. Yu, CCS Chem. 2021, 3, 2280; d) C. Sun, Z. Liu, S. Wang, H. Pang, R. Bai, Q. Wang, W. Chen, A. Zheng, W. Yan, J. Yu, CCS Chem. 2021, 3, 189.
dc.identifier.citedreferencea) B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis, H.-G. Boyen, Adv. Energy Mater. 2015, 5, 1500477; b) K. Hong, Q. V. Le, S. Y. Kim, H. W. Jang, J. Mater. Chem. C 2018, 6, 2189.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.