Show simple item record

Dispersive Charge Transfer State Electroluminescence in Organic Solar Cells

dc.contributor.authorLampande, Raju
dc.contributor.authorPizano, Adrian
dc.contributor.authorGui, Manting
dc.contributor.authorCawthorn, Robert
dc.contributor.authorRand, Barry P.
dc.contributor.authorGiebink, Noel C.
dc.date.accessioned2023-07-14T13:53:18Z
dc.date.available2024-07-14 09:53:17en
dc.date.available2023-07-14T13:53:18Z
dc.date.issued2023-06
dc.identifier.citationLampande, Raju; Pizano, Adrian; Gui, Manting; Cawthorn, Robert; Rand, Barry P.; Giebink, Noel C. (2023). "Dispersive Charge Transfer State Electroluminescence in Organic Solar Cells." Advanced Energy Materials 13(24): n/a-n/a.
dc.identifier.issn1614-6832
dc.identifier.issn1614-6840
dc.identifier.urihttps://hdl.handle.net/2027.42/177180
dc.description.abstractThe notion of quasi-equilibrium is central to most solar cells; however, it has been questioned in organic photovoltaics (OPVs) owing to strong energetic disorder that frustrates efficient relaxation of electrons and holes within their respective density of states (DOS). Here, modulation electroluminescence (EL) spectroscopy is applied to OPVs and it is found that the frequency response of charge transfer (CT) state EL on the high energy side of the spectrum differs from that of the low energy side. This observation confirms that static disorder contributes substantially to the linewidth of the steady-state EL spectrum and is unambiguous proof that the distribution of CT states formed by electrical injection in the dark is not in quasi-equilibrium. These results emphasize the need for caution when analyzing OPV cells on the basis of reciprocity models that assume quasi-equilibrium holds, and highlight a new method to study this unusual aspect of OPV operation.Disorder in organic solar cells leads to an energetic distribution of charge transfer (CT) states. Modulation electroluminescence spectroscopy shows that higher energy CT states in this distribution respond to a voltage perturbation faster than lower energy CT states, confirming that they do not exist in quasi-equilibrium, even for devices operated in the dark.
dc.publisherImperial College Press
dc.publisherWiley Periodicals, Inc.
dc.subject.othernon-equilibrium
dc.subject.otherorganic photovoltaics
dc.subject.otherrelaxation
dc.subject.otherdensity of states
dc.subject.otherdisorder
dc.titleDispersive Charge Transfer State Electroluminescence in Organic Solar Cells
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177180/1/aenm202300394.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177180/2/aenm202300394-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177180/3/aenm202300394_am.pdf
dc.identifier.doi10.1002/aenm.202300394
dc.identifier.sourceAdvanced Energy Materials
dc.identifier.citedreferenceR. Zorn, J. Chem. Phys. 2002, 116, 3204.
dc.identifier.citedreferenceY. T. Fu, D. A. Da Silva Filho, G. Sini, A. M. Asiri, S. G. Aziz, C. Risko, J. L. Brédas, Adv. Funct. Mater. 2014, 24, 3790.
dc.identifier.citedreferenceT. Azuhata, T. Homma, Y. Ishikawa, S. F. Chichibu, T. Sota, T. Mukai, Appl. Phys. Lett. 2001, 79, 1100.
dc.identifier.citedreferenceK. Bansal, S. Datta, J. Appl. Phys. 2011, 110, 114509.
dc.identifier.citedreferenceR. S. Sánchez, A. Villanueva-Antolí, A. Bou, M. Ruiz-Murillo, I. Mora-Seró, J. Bisquert, R. S. Sánchez, A. Villanueva-Antolí, A. Bou, I. Mora-Seró, J. Bisquert, M. Ruiz-Murillo, Adv. Mater. 2023, 35, 2207993.
dc.identifier.citedreferenceS. U. Z. Khan, B. P. Rand, Phys. Rev. Appl. 2021, 16, 044026.
dc.identifier.citedreferenceL. Zhu, K. Xu, Y. Wang, J. Chen, D. Ma, Front Optoelectron 2015, 8, 439.
dc.identifier.citedreferenceS. Weissenseel, A. Gottscholl, R. Bönnighausen, V. Dyakonov, A. Sperlich, Sci. Adv. 2021, 7, 9961.
dc.identifier.citedreferenceS. Ullbrich, J. Benduhn, X. Jia, V. C. Nikolis, K. Tvingstedt, F. Piersimoni, S. Roland, Y. Liu, J. Wu, A. Fischer, D. Neher, S. Reineke, D. Spoltore, K. Vandewal, Nat. Mater. 2019, 18, 459.
dc.identifier.citedreferenceN. Bunzmann, S. Weissenseel, L. Kudriashova, J. Gruene, B. Krugmann, J. V. Grazulevicius, A. Sperlich, V. Dyakonov, Mater. Horiz. 2020, 7, 1126.
dc.identifier.citedreferenceB. K. P. Scaife, Principles of Dielectrics, Clarendon Press, Oxford 1998.
dc.identifier.citedreferenceD. W. Davidson, R. H. Cole, J. Chem. Phys. 1951, 19, 1484.
dc.identifier.citedreferenceN. Felekidis, A. Melianas, L. E. Aguirre, M. Kemerink, Adv. Energy Mater. 2018, 8, 1800419.
dc.identifier.citedreferenceW. Gong, M. A. Faist, N. J. Ekins-Daukes, Z. Xu, D. D. C. Bradley, J. Nelson, T. Kirchartz, Phys. Rev. B 2012, 86, 024201.
dc.identifier.citedreferenceK. Tvingstedt, J. Benduhn, K. Vandewal, Mater. Horiz. 2020, 7, 1888.
dc.identifier.citedreferenceF. J. Kahle, A. Rudnick, H. Bässler, A. Köhler, Mater. Horiz. 2018, 5, 837.
dc.identifier.citedreferenceR. Schmechel, J. Appl. Phys. 2003, 93, 4653.
dc.identifier.citedreferenceD. Scheunemann, M. Kemerink, Phys. Rev. B 2020, 101, 075206.
dc.identifier.citedreferenceM. De Jong, L. Seijo, A. Meijerink, F. T. Rabouw, Phys. Chem. Chem. Phys. 2015, 17, 16959.
dc.identifier.citedreferenceB. Henderson, G. F. Imbusch, Optical Spectroscopy of Inorganic Solids Clarendon Press, Oxford 1989.
dc.identifier.citedreferenceA. Kohler, H. Bassler, Electronic Processes in Organic Semiconductors, Wiley-VCH, Weinheim, Germany 2015.
dc.identifier.citedreferenceA. Massé, P. Friederich, F. Symalla, F. Liu, R. Nitsche, R. Coehoorn, W. Wenzel, P. A. Bobbert, Phys. Rev. B 2016, 93, 195209.
dc.identifier.citedreferenceA. Massé, P. Friederich, F. Symalla, F. Liu, V. Meded, R. Coehoorn, W. Wenzel, P. A. Bobbert, Phys. Rev. B 2017, 95, 115204.
dc.identifier.citedreferenceN. Felekidis, A. Melianas, M. Kemerink, Phys. Rev. B 2016, 94, 035205.
dc.identifier.citedreferenceN. D. Nguyen, M. Schmeits, Phys. Status Solidi 2006, 203, 1901.
dc.identifier.citedreferenceM. Mesta, J. Cottaar, R. Coehoorn, P. A. Bobbert, Appl. Phys. Lett. 2014, 104, 213301.
dc.identifier.citedreferenceT. Upreti, C. Tormann, M. Kemerink, J. Phys. Chem. Lett. 2022, 13, 6514.
dc.identifier.citedreferenceG. Zuo, S. Shoaee, M. Kemerink, D. Neher, Phys. Rev. Appl. 2021, 16, 034027.
dc.identifier.citedreferenceJ. Nelson, The Physics of Solar Cells, Imperial College Press, London 2004.
dc.identifier.citedreferenceP. Würfel, U. Würfel, Physics of Solar Cells, Wiley-VCH Verlag GmbH, Weinheim 2016.
dc.identifier.citedreferenceA. Melianas, V. Pranculis, A. Devižis, V. Gulbinas, O. Inganäs, M. Kemerink, Adv. Funct. Mater. 2014, 24, 4507.
dc.identifier.citedreferenceA. Melianas, V. Pranculis, Y. Xia, N. Felekidis, O. Inganäs, V. Gulbinas, M. Kemerink, Adv. Energy Mater. 2017, 7, 1602143.
dc.identifier.citedreferenceA. Melianas, N. Felekidis, Y. Puttisong, S. C. J. Meskers, O. Inganäs, W. M. Chen, M. Kemerink, Proc. Natl. Acad. Sci. USA 2019, 116, 23416.
dc.identifier.citedreferenceA. Melianas, F. Etzold, T. J. Savenije, F. Laquai, O. Inganäs, M. Kemerink, Nat. Commun. 2015, 6, 8778.
dc.identifier.citedreferenceA. N. Brigeman, M. A. Fusella, B. P. Rand, N. C. Giebink, Phys. Rev. Appl. 2018, 10, 034034.
dc.identifier.citedreferenceS. Roland, J. Kniepert, J. A. Love, V. Negi, F. Liu, P. Bobbert, A. Melianas, M. Kemerink, A. Hofacker, D. Neher, J. Phys. Chem. Lett. 2019, 10, 1374.
dc.identifier.citedreferenceV. M. Le Corre, A. R. Chatri, N. Y. Doumon, L. Jan, A. Koster, V. M. Le Corre, A. R. Chatri, N. Y. Doumon, L. J. A. Koster, Adv. Energy Mater. 2017, 7, 1701138.
dc.identifier.citedreferenceN. J. Van Der Kaap, L. J. A. Koster, Sci. Reports 2016 61 2016, 6, 19794.
dc.identifier.citedreferenceV. M. Le Corre, A. Rahimi Chatri, N. Y. Doumon, L. Jan Anton Koster, V. M. Le Corre, A. Rahimi Chatri, N. Y. Doumon, L. J. A. Koster, Adv. Energy Mater. 2018, 8, 1803125.
dc.identifier.citedreferenceH. Bässler, Phys. Status Solidi B 1993, 175, 15.
dc.identifier.citedreferenceP. M. Borsenberger, E. H. Magin, M. Der Van Auweraer, F. C. De Schryver, Phys. Status Solidi 1993, 140, 9.
dc.identifier.citedreferenceP. B. Deotare, W. Chang, E. Hontz, D. N. Congreve, L. Shi, P. D. Reusswig, B. Modtland, M. E. Bahlke, C. K. Lee, A. P. Willard, V. Bulovic, T. Van Voorhis, M. A. Baldo, Nat. Mater. 2015, 14, 1130.
dc.identifier.citedreferenceL. J. A. Koster, E. C. P. Smits, V. D. Mihailetchi, P. W. M. Blom, Phys Rev B Condens Matter Mater Phys 2005, 72, 085205.
dc.identifier.citedreferenceK. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J. V. Manca, Nat. Mater. 2009, 8, 904.
dc.identifier.citedreferenceT. Kirchartz, B. E. Pieters, K. Taretto, U. Rau, J. Appl. Phys. 2008, 104, 094513.
dc.identifier.citedreferenceK. Vandewal, K. Tvingstedt, J. V. Manca, O. Inganäs, IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1676.
dc.identifier.citedreferenceK. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J. V. Manca, Phys. Rev. B 2010, 81, 125204.
dc.identifier.citedreferenceT. M. Clarke, J. R. Durrant, Chem. Rev. 2010, 110, 6736.
dc.identifier.citedreferenceK. Vandewal, Ann. Rev. Phys. Chem. 2016, 67, 113.
dc.identifier.citedreferenceS. U. Z. Khan, J. Bertrandie, M. Gui, A. Sharma, W. Alsufyani, J. F. Gorenflot, F. Laquai, D. Baran, B. P. Rand, Joule 2022, 6, 2821.
dc.identifier.citedreferenceZ. Zheng, N. R. Tummala, T. Wang, V. Coropceanu, J. L. Brédas, Adv. Energy Mater. 2019, 9, 1803926.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.