Show simple item record

Mechanism of B-H Redistribution during Reduction of Polyborazylene by Hydrazine

dc.contributor.authorBhunya, Sourav
dc.contributor.authorZimmerman, Paul M.
dc.contributor.authorPaul, Ankan
dc.date.accessioned2023-07-14T13:53:38Z
dc.date.available2024-07-14 09:53:36en
dc.date.available2023-07-14T13:53:38Z
dc.date.issued2023-06-13
dc.identifier.citationBhunya, Sourav; Zimmerman, Paul M.; Paul, Ankan (2023). "Mechanism of B-H Redistribution during Reduction of Polyborazylene by Hydrazine." European Journal of Inorganic Chemistry 26(17): n/a-n/a.
dc.identifier.issn1434-1948
dc.identifier.issn1099-0682
dc.identifier.urihttps://hdl.handle.net/2027.42/177190
dc.description.abstractDensity functional theory has been used to elucidate the mechanistic underpinnings of the regeneration of ammonia-borane (H3B−NH3, AB) from polyborazylene (BxNxHx, PBz) in the presence of hydrazine (H2N−NH2, Hz). Herein, borazine (B3N3H6, Bz) is used as the simplest relevant model of PBz for the regeneration process. Digestion of Bz using Hz was found to occur by a string of Lewis acid base adduct (between B atoms of Bz and Hz molecule) formation and Hz assisted proton transfer processes. Later, B−H bonds of HB(NHNH2)2, the Bz digested product, are redistributed to form hydrazine-borane (H3B−NH2NH2, HzB) and B(NHNH2)3. Redistribution of B−H bonds occurs through hydroboration and concerted proton-hydride transfer. Another B−H redistributed product, B(NHNH2)3, produces HzB as a result of proton and hydride transfer from cis-diazene (Dz), the oxidized product of Hz in presence of O2.This work charts out the detailed mechanism of reduction of polyborazylene by hydrazine. Hydrazine initially helps to cleave the network of B−N bonds by acting as a Lewis base and proton shuttle. Later B−H redistribution between the B−H units formed after digestion of polyborazylene and further hydrogenation facilitated by diazene plays a vital role in regeneration of ammonia-borane (H3B−NH3).
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhydrazine
dc.subject.otherreaction mechanisms
dc.subject.otherboranes
dc.subject.otherconcerted proton hydride transfer
dc.subject.otherammonia-borane regeneration
dc.titleMechanism of B-H Redistribution during Reduction of Polyborazylene by Hydrazine
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177190/1/ejic202200784.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177190/2/ejic202200784_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177190/3/ejic202200784-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/ejic.202200784
dc.identifier.sourceEuropean Journal of Inorganic Chemistry
dc.identifier.citedreferenceV. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995 – 2001;
dc.identifier.citedreferenceS. Hausdorf, F. Baitalow, G. Wolf, F. O. R. L. Mertens, Int. J. Hydrogen Energy 2008, 33, 608 – 614.
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Hünig, H. R. Müller, W. Thier, Angew. Chem. Int. Ed. 1965, 4, 271 – 280; Angew. Chem. 1965, 77, 368 – 377;
dc.identifier.citedreferenceD. J. Pasto, R. T. Taylor, Org. React. 1991, 40, 91 – 155;
dc.identifier.citedreferenceM. P. Feth, K. Rossen, A. Burgard, Org. Process Res. Dev. 2013, 17, 282 – 293.
dc.identifier.citedreferenceA. Banerjee, G. Ganguly, L. Roy, S. Pathak, A. Paul, Chem. Eur. J. 2016, 22, 1216 – 1222.
dc.identifier.citedreferenceB. Pieber, T. S. Martinez, D. Cantillo, C. O. Kappe, Angew. Chem. Int. Ed. 2013, 52, 10241 – 10244; Angew. Chem. 2013, 125, 10431 – 10434.
dc.identifier.citedreferenceGaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009. See Supporting Information for full citation.
dc.identifier.citedreferenceY. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Theory Comput. 2006, 2, 364 – 382.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. M. Zimmerman, J. Chem. Phys. 2013, 138, 184102;
dc.identifier.citedreferenceP. M. Zimmerman, J. Chem. Theory Comput. 2013, 9, 3043 – 3050;
dc.identifier.citedreferenceP. M. Zimmerman, J. Comput. Chem. 2015, 36, 601 – 611.
dc.identifier.citedreference 
dc.identifier.citedreferenceC. Reller, F. O. R. L. Mertens, Angew. Chem. Int. Ed. 2012, 51, 11731 – 11735; Angew. Chem. 2012, 124, 11901 – 11905;
dc.identifier.citedreferenceM. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comb. Chem. 2003, 24, 669 – 81.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. H. Wertz, J. Am. Chem. 1980, 102, 5316 – 5322;
dc.identifier.citedreferenceC. Spickermann, in E ntropies of Condensed Phases and Complex Systems, Springer, Berlin, 2010; Springer Theses, pp 76 – 80, and references therein;
dc.identifier.citedreferenceR. E. Plata, D. A. Singleton, J. Am. Chem. Soc. 2015, 137, 3811 – 3826.
dc.identifier.citedreference 
dc.identifier.citedreferenceG. E. Scuseria, H. F. Schaefer III, J. Chem. Phys. 1989, 90, 3700 – 3703;
dc.identifier.citedreferenceG. E. Scuseria, C. L. Janssen, H. F. Schaefer III, J. Chem. Phys. 1988, 89, 7382 – 7387;
dc.identifier.citedreferenceG. D. Purvis III, R. J. Bartlett, J. Chem. Phys. 1982, 76, 1910 – 1918.
dc.identifier.citedreference 
dc.identifier.citedreferenceD. G. Liakos, Y. Guo, F. Neese, J. Phys. Chem. A 2020, 124, 90 – 100;
dc.identifier.citedreferenceJ. Calbo, J. C. Sancho-García, E. Ortí, J. Aragó, J. Comput. Chem. 2017, 38, 1869 – 1878.
dc.identifier.citedreference 
dc.identifier.citedreferenceA. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 2010, 110, 4023 – 4078;
dc.identifier.citedreferenceA. Staubitz, A. P. M. Robertson, I. Manners, Chem. Rev. 2010, 110, 4079 – 4124;
dc.identifier.citedreferenceF. H. Stephens, V. Pons, R. T. Baker, Dalton Trans. 2007, 2613 – 2626;
dc.identifier.citedreferenceN. C. Smythe, J. C. Gordon, Eur. J. Inorg. Chem. 2010, 509 – 521;
dc.identifier.citedreferenceC. W. Hamilton, R. T. Baker, A. Staubitz, I. Manners, Chem. Soc. Rev. 2009, 38, 279 – 293;
dc.identifier.citedreferenceB. Peng, J. Chen, Energy Environ. Sci. 2008, 1, 479 – 483;
dc.identifier.citedreferenceH. Li, Q. Yang, X. Chen, S. G. Shore, J. Organomet. Chem. 2014, 751, 60 – 66;
dc.identifier.citedreferenceS. Bhunya, T. Malakar, G. Ganguly, A. Paul, ACS Catal. 2016, 6, 7907 – 7934;
dc.identifier.citedreferenceA. Rossin, M. Peruzzini, Chem. Rev. 2016, 116, 8848 – 8872;
dc.identifier.citedreferenceT. B. Marder, Angew. Chem. Int. Ed. 2007, 46, 8116 – 8118; Angew. Chem. 2007, 119, 8262 – 8264;
dc.identifier.citedreferenceI. Bhattacharjee, M. Sultana, S. Bhunya, A. Paul, Chem. Commun. 2022, 58, 1672 – 1684.
dc.identifier.citedreferenceO. T. Summerscales, J. C. Gordon, Dalton Trans. 2013, 42, 10075 – 10084.
dc.identifier.citedreferenceB. L. Davis, D. A. Dixon, E. B. Garner, J. C. Gordon, M. H. Matus, B. Scott, F. H. Stephens, Angew. Chem. Int. Ed. 2009, 48, 6812 – 6816; Angew. Chem. 2009, 121, 6944 – 6948;
dc.identifier.citedreferenceA. D. Sutton, B. L. Davis, K. X. Bhattacharyya, B. D. Ellis, J. C. Gordon, P. P. Power, Chem. Commun. 2010, 46, 148 – 149.
dc.identifier.citedreferenceA. P. M. Robertson, G. R. Whittell, A. Staubitz, K. Lee, A. J. Lough, I. Manners, Eur. J. Inorg. Chem. 2011, 5279 – 5287.
dc.identifier.citedreference 
dc.identifier.citedreferenceT. J. Carter, J. W. Kampf, N. K. Szymczak, Angew. Chem. Int. Ed. 2012, 51, 13168 – 13172; Angew. Chem. 2012, 124, 13345 – 13349;
dc.identifier.citedreferenceT. J. Carter, J. Y. Wang, N. K. Szymczak, Organometallics 2014, 33, 1540 – 1543;
dc.identifier.citedreferenceT. J. Carter, Z. M. Heiden, N. K. Szymczak, Chem. Sci. 2015, 6, 7258 – 7266.
dc.identifier.citedreferenceA. D. Sutton, A. K. Burrell, D. A. Dixon, E. B. Garner   III, J. C. Gordon, T. Nakagawa, K. C. Ott, J. P. Robinson, M. Vasiliu, Science 2011, 331, 1426 – 1429.
dc.identifier.citedreference 
dc.identifier.citedreferenceP. M. Zimmerman, A. Paul, Z. Zhang, C. B. Musgrave, Inorg. Chem. 2009, 48, 1069 – 1081;
dc.identifier.citedreferenceA. P. M. Robertson, E. M. Leitao, I. Manners, J. Am. Chem. Soc. 2011, 133, 19322 – 19325;
dc.identifier.citedreferenceE. M. Leitao, E. N. Stubbs, A. Robertson, H. Helten, R. J. Cox, G. C. Lloyd-Jones, I. Manners, J. Am. Chem. Soc. 2012, 134, 16805 – 16816;
dc.identifier.citedreferenceL. Roy, S. Mittal, A. Paul, Angew. Chem. Int. Ed. 2012, 51, 4152 – 4156; Angew. Chem. 2012, 124, 4228 – 4232.
dc.identifier.citedreferenceS. Bhunya, P. M. Zimmerman, A. Paul, ACS Catal. 2015, 5, 3478 – 3493.
dc.identifier.citedreferenceB. L. Davis, B. D. Rekken, R. Michalczyk, E. B. Garner III, D. A. Dixon, H. Kalviri, R. T. Baker, D. L. Thorne, Chem. Commun. 2013, 49, 9095 – 9097.
dc.identifier.citedreferenceT. Malakar, L. Roy, A. Paul, Chem. Eur. J. 2013, 19, 5812 – 5817.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.