Show simple item record

p53 expression in cytology samples may represent a marker of early-stage cancer

dc.contributor.authorPolicardo, Federica
dc.contributor.authorTralongo, Pietro
dc.contributor.authorArciuolo, Damiano
dc.contributor.authorFiorentino, Vincenzo
dc.contributor.authorCardasciani, Lina
dc.contributor.authorPierconti, Francesco
dc.contributor.authorCarlino, Angela
dc.contributor.authorCuratolo, Mariangela
dc.contributor.authorPontecorvi, Alfredo
dc.contributor.authorFadda, Guido
dc.contributor.authorCrea, Carmela
dc.contributor.authorLombardi, Celestino Pio
dc.contributor.authorRaffaelli, Marco
dc.contributor.authorLarocca, Luigi Maria
dc.contributor.authorPantanowitz, Liron
dc.contributor.authorRossi, Esther Diana
dc.date.accessioned2023-07-14T13:53:46Z
dc.date.available2024-07-14 09:53:45en
dc.date.available2023-07-14T13:53:46Z
dc.date.issued2023-06
dc.identifier.citationPolicardo, Federica; Tralongo, Pietro; Arciuolo, Damiano; Fiorentino, Vincenzo; Cardasciani, Lina; Pierconti, Francesco; Carlino, Angela; Curatolo, Mariangela; Pontecorvi, Alfredo; Fadda, Guido; Crea, Carmela; Lombardi, Celestino Pio; Raffaelli, Marco; Larocca, Luigi Maria; Pantanowitz, Liron; Rossi, Esther Diana (2023). "p53 expression in cytology samples may represent a marker of early-stage cancer." Cancer Cytopathology 131(6): 392-401.
dc.identifier.issn1934-662X
dc.identifier.issn1934-6638
dc.identifier.urihttps://hdl.handle.net/2027.42/177194
dc.description.abstractBackgroundTP53 gene plays a major role in the negative control of cell proliferation and in the regulation of signaling cascades. TP53 mutation may have a relevant role in the malignant transformation of thyroid cells as well as thyroid tumor progression. TP53 mutation has been detected only in few well differentiated thyroid carcinomas and is absent in benign conditions.MethodsA total of 162 prospective thyroid cytology and corresponding histological samples diagnosed from atypia of indeterminate significance (AUS) to malignant, were studied via immunocytochemistry for p53. Hence, 50 benign lesions (B) were used as negative control. Molecular analysis for p53 only was performed.ResultsThe cytology resulted in 50 B, 48 AUS, 40 follicular neoplasms (FNs), 23 suspicious for malignancy (SFM), and 1 malignant (M) case. The authors reported 102 negative and 60 positive p53 cases. The 60 positive cases included 27 cases with weak and/or focal cytoplasmic positivity (+1) and 33 with cases moderate (2+) to strong (3+) cytoplasmic and/or nuclear expression. Overall, 71 cases had histology (2 B, 11 AUS, 37 FN, 20 SFM, and 1 M) including 61.7% benign and 38.2% malignant diagnoses. Only 16 of 71 (5 FN, 10 SFM, and 1 M) were p53-positive. Furthermore, 100% AUS and 86.5% FN cases were p53-negative, none of which had malignant histology. All p53-positive cases were associated with a larger nodule size, tall-cell variant subtype, multifocality, extra thyroidal infiltration, and nodal metastases. Noninvasive follicular thyroid neoplasm with papillary like nuclear features were negative for p53. Few discrepancies in p53 intensity were observed on histology; there were no differences with the molecular testing.Conclusionsp53 might be useful in discriminating thyroid follicular lesions. p53 is likely to be a useful diagnostic marker in recognizing indeterminate lesions that are well-differentiated thyroid cancers.p53 might be useful in discriminating thyroid follicular lesions. p53 is likely to be a useful diagnostic marker in recognizing indeterminate lesions that are well-differentiated thyroid cancers.
dc.publisherWiley Periodicals, Inc.
dc.publisherBritish Thyroid Association, Royal College of Physicians
dc.subject.otherthyroid cancer
dc.subject.otherthyroid neoplasms
dc.subject.otherp53
dc.subject.otherfine-needle aspiration cytology
dc.subject.otherfollicular lesions
dc.subject.otherpersonalized medicine
dc.titlep53 expression in cytology samples may represent a marker of early-stage cancer
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelOncology and Hematology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177194/1/cncy22694_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177194/2/cncy22694.pdf
dc.identifier.doi10.1002/cncy.22694
dc.identifier.sourceCancer Cytopathology
dc.identifier.citedreferenceOertel YC. Fine-needle aspiration in the evaluation of thyroid neoplasms. Endocr Pathol. 1997; 8 ( 3 ): 215 - 224. doi: 10.1007/bf02738788
dc.identifier.citedreferencePollina L, Pacini F, Fontanini G, Vignati S, Bevilacqua G, Basolo F. Bcl-2, p53 and proliferatingg cell nuclear antigen expression is related to the degree of differentiation in thryoid carcinoma. Br J Cancer. 1996; 73 ( 2 ): 139 - 143. doi: 10.1038/bjc.1996.26
dc.identifier.citedreferencePuglisi F, Cesselli D, Damante G, et al. Expression of pax-8, p53, and bcl-2 in human benign and malignant thyroid diseases. Anticancer Res. 2000; 20: 311 - 316.
dc.identifier.citedreferenceSoares P, Cameselle-Teijeiro J, Sobrinho-Simoes M. Immunohistochemical detection of p53 in differentiated, poorly differentiated and undifferentiated carcinomas of the thyroid. Histopathology. 1994; 24 ( 3 ): 205 - 210. doi: 10.1111/j.1365-2559.1994.tb00511.x
dc.identifier.citedreferenceZheng Y, Wang L, Zhang JP, Yang JY, Zhao ZM, Zhang XY. Expression of p53, c-erbB-2 and Ki67 in intestinal metaplasia and gastric carcinoma. World J Gastroenterol. 2010; 16 ( 3 ): 339 - 344. doi: 10.3748/wjg.v16.i3.339
dc.identifier.citedreferenceOthman NH, Omar E, Mahmood MH, Madhavan M. Ret and p53 expression in thyroid follicular adenoma: a study of 52 cases with 14 years follow-up. Malays J Pathol. 2005; 27: 91 - 98.
dc.identifier.citedreferenceMorita N, Ikeda Y, Takami H. Clinical signifcance of p53 protein expression in papillary thyroid carcinoma. World J Surg. 2008; 32 ( 12 ): 2617 - 2622. doi: 10.1007/s00268-008-9756-9
dc.identifier.citedreferenceHorie S, Maeta H, Endo K, Ueta T, Takashima K, Terada T. Overexpression of p53 protein and MDM2 in papillary carcinomas of the thyroid: correlation with clinicopathologic features. Pathol Int. 2001; 51 ( 1 ): 11 - 15. doi: 10.1046/j.1440-1827.2001.01159.x
dc.identifier.citedreferenceGharib H, Goellner RJ, Johnson DA. Fine-needle aspiration of the thyroid: a 12 years experience with 11.000 biopsies. Clin Lab Med. 1993; 13 ( 3 ): 699 - 709. doi: 10.1016/s0272-2712(18)30434-7
dc.identifier.citedreferencePerros P, Boelaert K, Colley S, et al. Guidelines for the management of thyroid cancer Report of the Thyroid Cancer Guidelines Update Group. 3rd ed. British Thyroid Association, Royal College of Physicians; 2007.
dc.identifier.citedreferenceAli S, Cibas ES. The Bethesda System for Reporting Thyroid Cytopathology. 2nd ed. Springer; 2018.
dc.identifier.citedreferenceNardi F, Basolo F, Crescenzi A, et al. Italian consensus for the classification and reporting of thyroid cytology. J Endocrinol Invest. 2014; 37 ( 6 ): 593 - 599. doi: 10.1007/s40618-014-0062-0
dc.identifier.citedreferenceFadda G, Rossi ED, Raffaelli M, et al. Follicular thyroid neoplasms can be classified as low and high risk according to HBME-1 and Galectin 3 expression on liquid based fine needle cytology. Eur J Endocrinol. 2011; 165: 447 - 453. doi: 10.1530/eje-11-0181
dc.identifier.citedreferenceRossi ED, Martini M, Capodimonti S, et al. Morphology combined with ancillary techniques: an algorithm approach for thyroid nodules. Cytopathology. 2018; 29 ( 5 ): 418 - 427. doi: 10.1111/cyt.12555
dc.identifier.citedreferenceRossi ED, Martini M, Capodimonti S, et al. Analysis of immunocytochemical and molecular BRAF expression in thyroid carcinomas: a cyto-histological institutional experience. Cancer Cytopathol. 2014; 122: 52 - 56.
dc.identifier.citedreferenceFadda G, Rossi ED. Liquid based cytology in fine-needle aspiration biopsies of the thyroid gland. Acta Cytol. 2011; 55 ( 5 ): 389 - 400. doi: 10.1159/000329029
dc.identifier.citedreferenceKobel M, Ronnett BM, Singh N, Soslow RA, Gilks CB, McCluggage WG. Interpretation of p53 immunohistochemistry in endometrial carcinomas: toward increased reproducibility. Int J Gynecol Pathol. 2019; 1: S123 - S131. doi: 10.1097/pgp.0000000000000488
dc.identifier.citedreferenceRossi ED, Martini M, Capodimonti S, et al. BRAF (v600e) mutation analysis on LBC-processed aspiration biopsies predicts bilaterality and nodal involvement in papillary thyroid microcarcinoma. Cancer Cytopathol. 2013; 121 ( 6 ): 291 - 297. doi: 10.1002/cncy.21258
dc.identifier.citedreferenceLloyd RV, Osamura RY, Kloppel G, Rosai J, eds. WHO Classification of Tumours of Endocrine Organs. 4th ed. IARC; 2017.
dc.identifier.citedreferenceAmerican Joint Commission on Cancer (AJCC) Cancer Staging Atlas. 8th ed. Springer; 2017.
dc.identifier.citedreferenceNikiforov YE, Seethala RR, Tallini G, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016; 2 ( 8 ): 1023 - 1029. doi: 10.1001/jamaoncol.2016.0386
dc.identifier.citedreferenceFadda G, Rossi ED. Liquid based cytology in fine-needle aspiration biopsies of the thyroid gland. Acta Cytol. 2011; 55 ( 5 ): 389 - 400. doi: 10.1159/000329029
dc.identifier.citedreferenceDecaussin-Petrucci M, Descotes F, Depaepe L, et al. Molecular testing of BRAF, RAS and TERT on thyroid FNAs with indeterminate cytology improves diagnostic accuracy. Cytopathology. 2017; 28 ( 6 ): 482 - 487. doi: 10.1111/cyt.12493
dc.identifier.citedreferenceBellevicine C, Migliatico I, Spariglia R, et al. Evaluation of BRAF, RAS, RET/PTC, and PAX8/PPARg alterations in different Bethesda diagnostic categories: a multicentric prospective study on the validity of the 7-gene panel test in 1172 thyroid FNAs deriving from different hospitals in South Italy. Cancer Cytopathol. 2020; 128 ( 2 ): 107 - 118. doi: 10.1002/cncy.22217
dc.identifier.citedreferenceRossi ED, Faquin WC, Pantanowitz L. Cytologic features of aggressive variants of follicular-derived thyroid carcinoma. Cancer Cytopathol. 2019; 127 ( 7 ): 432 - 446. doi: 10.1002/cncy.22136
dc.identifier.citedreferenceRossi ED, Martini M, Bizzarro T, et al. Uncommon BRAF mutations in the follicular variant of thyroid papillary carcinoma: new insights. Cancer Cytopathol. 2015; 123 ( 10 ): 593 - 602. doi: 10.1002/cncy.21586
dc.identifier.citedreferenceChakraborty A, Narkar A, Mukhopadhyaya R, Kane S, D’Cruz A, Rajan MG. BRAFV600E mutation in papillary thyroid carcinoma: significant association with node metastases and extra thyroidal invasion. Endocr Pathol. 2012; 23 ( 2 ): 83 - 93. doi: 10.1007/s12022-011-9184-5
dc.identifier.citedreferenceTrybek T, Walczyk A, Gąsior-Perczak D, et al. Impact of BRAF V600E and TERT promoter mutations on response to therapy in papillary thyroid cancer. Endocrinology. 2019; 160 ( 10 ): 2328 - 2338. doi: 10.1210/en.2019-00315
dc.identifier.citedreferenceDell’Aquila M, Fiorentino V, Martini M, et al. How limited molecular testing can also offer diagnostic and prognostic evaluation of thyroid nodules processed with liquid-based cytology: role of TERT promoter and BRAF V600E mutation analysis. Cancer Cytopath. 2021; 129 ( 10 ): 819 - 829. doi: 10.1002/cncy.22454
dc.identifier.citedreferenceMelo M, Gaspar da Rocha A, Batista R, et al. TERT, BRAF, and NRAS in primary thyroid cancer and metastatic disease. J Clin Endocrinol Metab. 2017; 102 ( 6 ): 1898 - 1907. doi: 10.1210/jc.2016-2785
dc.identifier.citedreferenceYan S, Huang M, Li X, Wang T, Ling R. Relationship between BRAFV600E and clinical features in papillary thyroid carcinoma. Endocr Connect. 2019; 8 ( 7 ): 988 - 996. doi: 10.1530/ec-19-0246
dc.identifier.citedreferenceHosal SA, Apel RL, Freeman JL, et al. Immunohistochemical localiation of p53 in human thyroid neoplams: correlations with biological behaviour. Endocr Pathol. 1997; 18 ( 1 ): 21 - 28. doi: 10.1007/bf02739704
dc.identifier.citedreferenceTan A, Etit D, Bayol U, Altinel D, Tan S. Comparison of proliferating cell nuclear antigen, thyroid transcription factor-1, Ki-67, p63, p53, and high-molecular weight cytokeratin expressions in papillary thyroid carcinoma, follicular carcinoma and follicular adenoma. Ann Diagn Pathol. 2011; 15 ( 2 ): 108 - 116. doi: 10.1016/j.anndiagpath.2010.11.005
dc.identifier.citedreferenceMarcello MA, Morari EC, Cunha LL, et al. P53 and expression of immunological markers may identify early stage thyroid tumors. Clin Developm Immunol. 2013: 846584.
dc.identifier.citedreferenceNasir A, Catalano E, Calafati S, et al. Role of p53, CD44V6 and CD57 in differentiating between benign and malignant follicular neoplasms of the thyroid. In Vivo. 2004; 18: 189 - 195.
dc.identifier.citedreferenceZafon C, Obiols G, Castellvi J, et al. Clinical significance of RET/PTC and p53 protein expression in sporadic papillary thyroid carcinoma. Histopathology. 2007; 50 ( 2 ): 225 - 231. doi: 10.1111/j.1365-2559.2006.02555.x
dc.identifier.citedreferenceLiu MC, Gelmann EP. P53 gene mutations: case study of a clinical marker for solid tumors. Semin Oncol. 2002; 29 ( 3 ): 246 - 257. doi: 10.1053/sonc.2002.32900
dc.identifier.citedreferencePark KY, Koh JM, Kim YI, et al. Prevalence of Gsx, RAS, P53 mutations and RET/PTC rearrangement in differentiated thyroid tumors in a Korean population. Clin Endocrinol. 1998; 49 ( 3 ): 317 - 323. doi: 10.1046/j.1365-2265.1998.00515.x
dc.identifier.citedreferencePellegriti G, Frasca F, Regalbuto C, et al. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factor. J Cancer Epidemiol. 2013; 2013: 965212.
dc.identifier.citedreferenceHaugen BR, Alexander E, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: the American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016; 26: 1 - 133.
dc.identifier.citedreferenceXing M, Haugen BR, Schlumberger M, et al. Progress in molecular based management of differentiated thyroid cancer. Lancet. 2013; 381 ( 9871 ): 1058 - 1069. doi: 10.1016/s0140-6736(13)60109-9
dc.identifier.citedreferenceNikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011; 7 ( 10 ): 569 - 580. doi: 10.1038/nrendo.2011.142
dc.identifier.citedreferenceXing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer. 2005; 12 ( 2 ): 245 - 262. doi: 10.1677/erc.1.0978
dc.identifier.citedreferenceTufanoTeixera RPGV, Bishop J, Carson KA, Xing M. BRAF mutation in papillary thyroid cancer and its value in tailoring initial treatment: a systematic review and meta-analysis. Medicine (Baltimore). 2012; 91 ( 5 ): 274 - 286. doi: 10.1097/md.0b013e31826a9c71
dc.identifier.citedreferenceXing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases and clinical implications. Endocr Rev. 2007; 28 ( 7 ): 742 - 762. doi: 10.1210/er.2007-0007
dc.identifier.citedreferenceXing M. Prognostic utility of BRAF mutation in papillary thyroid cancer. Mol Cell Endocrinol. 2010; 32 ( 1 ): 86 - 93. doi: 10.1016/j.mce.2009.10.012
dc.identifier.citedreferenceLiu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016; 23 ( 3 ): R143 - R155. doi: 10.1530/erc-15-0533
dc.identifier.citedreferenceDobashi Y, Sakamoto A, Sugimura H, et al. Overexpression of p53 as a possible prognostic factor in human thyroid carcinoma. Am J Surg Pathol. 1993; 17 ( 4 ): 375 - 381. doi: 10.1097/00000478-199304000-00008
dc.identifier.citedreferenceShin MK, Kim JW. Clinicopathologic and diagnostic significance of p53 protein expressionin papillary thyroid carcinoma. Asian Pac J Cancer Prev. 2014; 15 ( 5 ): 2341 - 2344. doi: 10.7314/apjcp.2014.15.5.2341
dc.identifier.citedreferenceMarcello MA, Morari EC, Cunha LL, et al. P53 and expression of immunological markers may identify early stage thyroid tumors. Clin Dev Immunol. 2013: 846584.
dc.identifier.citedreferenceMorita N, Ikeda Y, Takami H. Clinical significance f p53 protein expression in papillary thyroid carcinoma. World J Surg. 2008; 32 ( 12 ): 2617 - 2622. doi: 10.1007/s00268-008-9756-9
dc.identifier.citedreferenceChoudhury M, Singh S, Agarwal S. Diagnostic utility of ki-67 and p53 immunostaining on solitary thyroid nodule-a cytohistological and radionuclide scintigraphic study. Indian J Pathol Microb. 2011; 54 ( 3 ): 472 - 475. doi: 10.4103/0377-4929.85077
dc.identifier.citedreferenceDwidevi SS, Khandeparkar SGS, Joshi AR, et al. Study of immunohistochemical markers (CK-19, CD56, KI-67, P53) in differentiating benign and malignant solitary thyroid nodules with special reference to papillary thyroid carcinomas. J Clin Diagn Research. 2016: 10-EC14 - 19.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.