Show simple item record

Stretchable, Nano-Crumpled MXene Multilayers Impart Long-Term Antibacterial Surface Properties

dc.contributor.authorAsadi Tokmedash, Mohammad
dc.contributor.authorNagpal, Neha
dc.contributor.authorChen, Po-Yen
dc.contributor.authorVanEpps, J. Scott
dc.contributor.authorMin, Jouha
dc.date.accessioned2023-07-14T13:54:13Z
dc.date.available2024-07-14 09:54:12en
dc.date.available2023-07-14T13:54:13Z
dc.date.issued2023-06
dc.identifier.citationAsadi Tokmedash, Mohammad; Nagpal, Neha; Chen, Po-Yen ; VanEpps, J. Scott; Min, Jouha (2023). "Stretchable, Nano- Crumpled MXene Multilayers Impart Long- Term Antibacterial Surface Properties." Advanced Materials Interfaces 10(16): n/a-n/a.
dc.identifier.issn2196-7350
dc.identifier.issn2196-7350
dc.identifier.urihttps://hdl.handle.net/2027.42/177208
dc.description.abstractInfections are a significant risk to patients who receive medical implants, and can often lead to implant failure, tissue necrosis, and even amputation. So far, although various surface modification approaches are proposed for prevention and treatment of microbial biofilms on indwelling medical devices, most are too expensive/complicated to fabricate, unscalable, or limited in durability for clinical use. Here, this work presents a new bottom-up design for fabricating scalable and durable nano-patterned coatings with dynamic topography for long-term antibacterial effects. This work shows that MXene layer-by-layer (LbL) self-assembled coatings—with finely tunable crumpled structures with nanometer resolution and excellent mechanical durability—can be successfully fabricated on stretchable poly(dimethylsiloxane) (PDMS). The crumpled MXene coating with sharp-edged peaks shows potent antibacterial effects against Staphylococcus aureus and Escherichia coli. In addition, this work finds that on-demand dynamic deformation of the crumpled coating can remove ≥99% of adhered bacterial cells for both species, resulting in a clean surface with restored functionality. This approach offers improved practicality, scalability, and antibacterial durability over previous methods, and its flexibility may lend itself to many types of biomaterials and implantable devices.After implantation, opportunistic bacteria can readily attach to biomaterial surfaces and cause infection. Unlike a planar surface where the attached bacteria can form biofilm, the nano-crumpled MXene multilayers on stretchable surfaces can induce bacteria killing, and the subsequent application of mechanical stretching can induce dynamic surface deformation to release the dead cells, resulting in a clean surface with restored multifunctionality.
dc.publisherNational Institute of Diabetes and Digestive and Kidney Diseases
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlayer-by-layer assembly
dc.subject.otherdynamic topography
dc.subject.otherMXene
dc.subject.othercrumple structures
dc.subject.otherantibacterial surfaces
dc.titleStretchable, Nano-Crumpled MXene Multilayers Impart Long-Term Antibacterial Surface Properties
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177208/1/admi202202350.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177208/2/admi202202350_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177208/3/admi202202350-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/admi.202202350
dc.identifier.sourceAdvanced Materials Interfaces
dc.identifier.citedreferenceC. D. Bandara, S. Singh, I. O. Afara, A. Wolff, T. Tesfamichael, K. Ostrikov, A. Oloyede, ACS Appl. Mater. Interfaces 2017, 9, 6746.
dc.identifier.citedreferenceJ. B. Zhang, Y. Fu, A. C. Mo, Int. J. Nanomed. 2019, 14, 10091.
dc.identifier.citedreferencea) K. Rasool, M. Helal, A. Ali, C. E. Ren, Y. Gogotsi, K. A. Mahmoud, ACS Nano 2016, 10, 3674; b) A. A. Shamsabadi, M. S. Gh, B. Anasori, M. Soroush, ACS Sustain. Chem. Eng. 2018, 6, 16586.
dc.identifier.citedreferenceP. T. Hammond, Mater. Today 2012, 15, 196.
dc.identifier.citedreferencea) T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, K. Hata, Nat. Nanotechnol. 2011, 6, 296; b) Z. Liu, H. Li, B. J. Shi, Y. B. Fan, Z. L. Wang, Z. Li, Adv. Funct. Mater. 2019, 29, 1808820.
dc.identifier.citedreferenceM. Alhabeb, K. Maleski, B. Anasori, P. Lelyukh, L. Clark, S. Sin, Y. Gogotsi, Chem. Mater. 2017, 29, 7633.
dc.identifier.citedreferenceNational Institute of Diabetes and Digestive and Kidney Diseases in LiverTox: Clinical and Research Information on Drug-Induced Liver Injury, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 2012.
dc.identifier.citedreferenceW. Tian, A. VahidMohammadi, Z. Wang, L. Ouyang, M. Beidaghi, M. M. Hamedi, Nat. Commun. 2019, 10, 2558.
dc.identifier.citedreferencea) O. Mashtalir, M. Naguib, V. N. Mochalin, Y. Dall’Agnese, M. Heon, M. W. Barsoum, Y. Gogotsi, Nat. Commun. 2013, 4, 1716; b) M. Naguib, V. N. Mochalin, M. W. Barsoum, Y. Gogotsi, Adv. Mater. 2014, 26, 992.
dc.identifier.citedreferenceW. Q. Tian, A. VahidMohammadi, M. S. Reid, Z. Wang, L. Q. Ouyang, J. Erlandsson, T. Pettersson, L. Wagberg, M. Beidaghi, M. M. Hamedi, Adv. Mater. 2019, 31, 1902977.
dc.identifier.citedreferenceW. K. Lee, W. B. Jung, D. Rhee, J. T. Hu, Y. A. L. Lee, C. Jacobson, H. T. Jung, T. W. Odom, Adv. Mater. 2018, 30, 1706657.
dc.identifier.citedreferenceT. H. Chang, T. R. Zhang, H. T. Yang, K. R. Li, Y. Tian, J. Y. Lee, P. Y. Chen, ACS Nano 2018, 12, 8048.
dc.identifier.citedreferenceS. K. Deng, V. Berry, Mater. Today 2016, 19, 197.
dc.identifier.citedreferenceZ. Y. Huang, W. Hong, Z. Suo, J. Mech. Phys. Solids 2005, 53, 2101.
dc.identifier.citedreferencea) C. Chirouze, F. Alla, V. G. Fowler, D. J. Sexton, G. R. Corey, V. H. Chu, A. Wang, M. L. Erpelding, E. Durante-Mangoni, N. Fernandez-Hidalgo, E. Giannitsioti, M. M. Hannan, T. Lejko-Zupanc, J. M. Miro, P. Munoz, D. R. Murdoch, P. Tattevin, C. Tribouilloy, B. Hoen, L. Clara, M. Sanchez, F. Nacinovich, P. F. Oses, R. Ronderos, A. Sucari, J. Thierer, J. Casabe, C. Cortes, J. Altclas, S. Kogan, et al., Clin. Infect. Dis. 2015, 60, 741; b) D. Perez-Montarelo, E. Viedma, N. Larrosa, C. Gomez-Gonzalez, E. R. de Gopegui, I. Munoz-Gallego, R. San Juan, N. Fernandez-Hidalgo, B. Aimirante, F. Chaves, Front. Microbiol. 2018, 9, 2210.
dc.identifier.citedreferenceR. P. Wenzel, N. Engl. J. Med. 2010, 362, 75.
dc.identifier.citedreferenceA. L. Flores-Mireles, J. N. Walker, M. Caparon, S. J. Hultgren, Nat. Rev. Microbiol. 2015, 13, 269.
dc.identifier.citedreferenceD. Davies, Nat. Rev. Drug Discov. 2003, 2, 114.
dc.identifier.citedreferencea) P. Shivapooja, Q. Wang, B. Orihuela, D. Rittschof, G. P. Lopez, X. Zhao, Adv. Mater. 2013, 25, 1430; b) S. W. Lee, J. Carnicelli, D. Getya, I. Gitsov, K. S. Phillips, D. C. Ren, ACS Appl. Mater. Interfaces 2021, 13, 17174.
dc.identifier.citedreferencea) V. Levering, C. Cao, P. Shivapooja, H. Levinson, X. Zhao, G. P. Lopez, Biomaterials 2016, 77, 77; b) V. Levering, Q. M. Wang, P. Shivapooja, X. H. Zhao, G. P. Lopez, Adv. Healthcare Mater. 2014, 3, 1588.
dc.identifier.citedreferenceH. Gu, S. W. Lee, J. Carnicelli, T. Zhang, D. C. Ren, Nat. Commun. 2020, 11, 2211.
dc.identifier.citedreferenceO. S. Lee, M. E. Madjet, K. A. Mahmoud, Nano Lett. 2021, 21, 8510.
dc.identifier.citedreferenceF. M. Zou, H. J. Zhou, D. Y. Jeong, J. Kwon, S. U. Eom, T. J. Park, S. W. Hong, J. Lee, ACS Appl. Mater. Interfaces 2017, 9, 1343.
dc.identifier.citedreferenceR. Y. Li, L. B. Zhang, L. Shi, P. Wang, ACS Nano 2017, 11, 3752.
dc.identifier.citedreferenceP. Xiong, Y. Y. Wu, Y. F. Liu, R. Z. Ma, T. Sasaki, X. Wang, J. W. Zhu, Energy Environ. Sci. 2020, 13, 4834.
dc.identifier.citedreferenceM. Wang, T. Tang, J. Orthop. Translat. 2019, 17, 42.
dc.identifier.citedreferencea) Y. Jiao, F. R. Tay, L. N. Niu, J. H. Chen, Int. J. Oral. Sci. 2019, 11, 28; b) D. Campoccia, L. Montanaro, C. R. Arciola, Biomaterials 2013, 34, 8533; c) J. Min, K. Y. Choi, E. C. Dreaden, R. F. Padera, R. D. Braatz, M. Spector, P. T. Hammond, ACS Nano 2016, 10, 4441.
dc.identifier.citedreferencea) A. Azam, A. S. Ahmed, M. Oves, M. S. Khan, S. S. Habib, A. Memic, Int. J. Nanomed. 2012, 7, 6003; b) A. Besinis, T. De Peralta, R. D. Handy, Nanotoxicology 2014, 8, 1; c) S. M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M. H. Zarrintan, K. Adibkia, Mater. Sci. Eng., C 2014, 44, 278; d) Z. N. Zhu, H. F. Meng, W. J. Liu, X. F. Liu, J. X. Gong, X. H. Qiu, L. Jiang, D. Wang, Z. Y. Tang, Angew. Chem. Int. Ed. 2011, 50, 1593; e) M. J. McGuffie, J. Hong, J. H. Bahng, E. Glynos, P. F. Green, N. A. Kotov, J. G. Younger, J. S. VanEpps, Nanomed. Nanotechnol. 2016, 12, 33.
dc.identifier.citedreferencea) A. Jaggessar, H. Shahali, A. Mathew, P. K. D. V. Yarlagadda, J. Nanobiotechnol. 2017, 15, 64; b) K. K. Chung, J. F. Schumacher, E. M. Sampson, R. A. Burne, P. J. Antonelli, A. B. Brennana, Biointerphases 2007, 2, 89; c) D. P. Linklater, V. A. Baulin, S. Juodkazis, R. J. Crawford, P. Stoodley, E. P. Ivanova, Nat. Rev. Microbiol. 2021, 19, 8.
dc.identifier.citedreferenceS. Pogodin, J. Hasan, V. A. Baulin, H. K. Webb, V. K. Truong, T. H. P. Nguyen, V. Boshkovikj, C. J. Fluke, G. S. Watson, J. A. Watson, R. J. Crawford, E. P. Ivanova, Biophys. J. 2013, 104, 835.
dc.identifier.citedreferencea) R. Y. Siddiquie, A. Gaddam, A. Agrawal, S. S. Dimov, S. S. Joshi, Langmuir 2020, 36, 5349; b) R. Bright, A. Hayles, J. Wood, D. Palms, T. Brown, D. Barker, K. Vasilev, Nano Lett. 2022, 22, 6724.
dc.identifier.citedreferencea) S. W. Lee, K. S. Phillips, H. Gu, M. Kazemzadeh-Narbat, D. C. Ren, Biomaterials 2021, 268, 120595; b) L. Pellegrino, L. S. Kriem, E. S. J. Robles, J. T. Cabral, ACS Appl. Mater. Interfaces 2022, 14, 31463; c) F. Robotti, S. Bottan, F. Fraschetti, A. Mallone, G. Pellegrini, N. Lindenblatt, C. Starck, V. Falk, D. Poulikakos, A. Ferrari, Stem Cells Int 2018, 8, 10887.
dc.identifier.citedreferencea) S. Zhao, Z. Y. Li, D. P. Linklater, L. Han, P. Jin, L. P. Wen, C. A. Chen, D. F. Xing, N. Q. Ren, K. Sun, S. Juodkazis, E. P. Ivanova, L. Jiang, Nano Lett. 2022, 22, 1129; b) M. C. Loya, K. S. Brammer, C. Choi, L. H. Chen, S. H. Jin, Acta Biomater. 2010, 6, 4589; c) H. Sekiguchi, Y. Higashi, K. Yamane, A. Wakahara, H. Okada, K. Kishino, J. Vac. Sci. Technol., B 2019, 37, 031207; d) K. Q. Peng, Y. Xu, Y. Wu, Y. J. Yan, S. T. Lee, J. Zhu, Small 2005, 1, 1062; e) D. W. Green, K. K. H. Lee, J. A. Watson, H. Y. Kim, K. S. Yoon, E. J. Kim, J. M. Lee, G. S. Watson, H. S. Jung, Stem Cells Int. 2017, 7, 41023; f) V. T. H. Pham, V. K. Truong, M. D. J. Quinn, S. M. Notley, Y. C. Guo, V. A. Baulin, M. Al Kobaisi, R. J. Crawford, E. P. Ivanova, ACS Nano 2015, 9, 8458.
dc.identifier.citedreferenceZ. Wang, D. Tonderys, S. E. Leggett, E. K. Williams, M. T. Kiani, R. S. Steinberg, Y. Qiu, I. Y. Wong, R. H. Hurt, Carbon 2016, 97, 14.
dc.identifier.citedreferenceC. E. Machnicki, F. F. Fu, L. Jing, P. Y. Chen, I. Y. Wong, J. Mater. Chem. B 2019, 7, 6293.
dc.identifier.citedreferencea) Y. C. Cai, J. Shen, C. W. Yang, Y. Wan, H. L. Tang, A. A. Aljarb, C. L. Chen, J. H. Fu, X. Wei, K. W. Huang, Y. Han, S. J. Jonas, X. C. Dong, V. Tung, Sci. Adv. 2020, 6, eabb5367; b) W. Chen, L. X. Liu, H. B. Zhang, Z. Z. Yu, ACS Nano 2021, 15, 7668.
dc.identifier.citedreferenceL. Jing, L. Y. Hsiao, S. Li, H. T. Yang, P. L. P. Ng, M. Ding, T. V. Truong, S. P. Gao, K. R. Li, Y. X. Guo, P. V. Y. Alvarado, P. Y. Chen, Mater. Horiz. 2021, 8, 2065.
dc.identifier.citedreferenceS. X. Feng, X. Wang, M. L. Wang, C. Bai, S. T. Cao, D. S. Kong, Nano Lett. 2021, 21, 7561.
dc.identifier.citedreferenceX. X. Han, J. Huang, H. Lin, Z. G. Wang, P. Li, Y. Chen, Adv. Healthcare Mater. 2018, 7, e1701394.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.