Show simple item record

Unveiling the Transformation from Aggregation-Caused Quenching to Encapsulation-Induced Emission Enhancement for Improving the Photoluminescence Properties and Detection Performance of Conjugated Polymer Material in Multiple States

dc.contributor.authorHussain, Sameer
dc.contributor.authorChen, Xi
dc.contributor.authorGao, Yingying
dc.contributor.authorSong, Huijia
dc.contributor.authorTian, Xuemeng
dc.contributor.authorHe, Yulian
dc.contributor.authorAbbas, Ansar
dc.contributor.authorAfroz, Mohammad Adil
dc.contributor.authorHao, Yi
dc.contributor.authorGao, Ruixia
dc.date.accessioned2023-07-14T13:54:33Z
dc.date.available2024-07-14 09:54:31en
dc.date.available2023-07-14T13:54:33Z
dc.date.issued2023-06
dc.identifier.citationHussain, Sameer; Chen, Xi; Gao, Yingying; Song, Huijia; Tian, Xuemeng; He, Yulian; Abbas, Ansar; Afroz, Mohammad Adil; Hao, Yi; Gao, Ruixia (2023). "Unveiling the Transformation from Aggregation-Caused Quenching to Encapsulation-Induced Emission Enhancement for Improving the Photoluminescence Properties and Detection Performance of Conjugated Polymer Material in Multiple States." Advanced Optical Materials 11(12): n/a-n/a.
dc.identifier.issn2195-1071
dc.identifier.issn2195-1071
dc.identifier.urihttps://hdl.handle.net/2027.42/177217
dc.description.abstractHigh hydrophobicity of π-extended conjugated polymers (CPs) adversely affects their photoluminescence quantum yield (PLQY) in water and hydrogel/solid state via an unsolicited aggregation-caused quenching (ACQ) process which ultimately hampers their sensing and imaging performance. Herein, an efficient strategy is presented to suppress and transform such ACQ process into an encapsulation-induced emission enhancement (EIEE) effect through facile preparation of CP/Pluronic F-127 fluorescent hybrid micelles and hydrogel. As a proof-of-concept, successful encapsulation of polyfluorene derivative PF-DBT-Im into F-127 micelles not only displays an improved PLQY (≈200% increment) in water/hydrogel state but also delivers unique and augmented sensing responses toward the emerging pollutants tetracyclines taken as model analyte, validating the superiority of EIEE-active hybrid micellar systems over ACQ suffering PF-DBT-Im aggregates. The established method not only provides a facile solution to circumvent ACQ problem existing in low water dispersible CPs but also endorses an enhanced, simplified sensing system for visual and on-site detection of analytes with likely futuristic applications in biomedicine and solid-state optoelectronics.Encapsulation-induced emission enhancement (EIEE) is proposed as a new concept to circumvent the aggregation-caused quenching (ACQ) problem, improve photoluminescence quantum yield (PLQY), and augment detection performance of conjugated polymer material. As a proof-of-concept, successful encapsulation of the conjugated polymer PF-DBT-Im into F-127 micelles displays an improved PLQY (≈200% increment) in water/hydrogel state and facilitates augmented sensing response toward tetracyclines.
dc.publisherWiley Periodicals, Inc.
dc.subject.othersensors
dc.subject.otheroptical properties
dc.subject.otherluminescent hydrogels
dc.subject.otherconjugated polymers
dc.subject.otherluminescent hybrid materials
dc.titleUnveiling the Transformation from Aggregation-Caused Quenching to Encapsulation-Induced Emission Enhancement for Improving the Photoluminescence Properties and Detection Performance of Conjugated Polymer Material in Multiple States
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177217/1/adom202202851_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177217/2/adom202202851-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177217/3/adom202202851.pdf
dc.identifier.doi10.1002/adom.202202851
dc.identifier.sourceAdvanced Optical Materials
dc.identifier.citedreferenceC. Alvarez–Lorenzo, A. Sosnik, A. Concheiro, Curr. Drug Targets 2011, 12, 1112.
dc.identifier.citedreferenceX.-D. Zhu, K. Zhang, Y. Wang, W.-W. Long, R.-J. Sa, T.-F. Liu, J. Lü, Inorg. Chem. 2018, 57, 1060.
dc.identifier.citedreferenceA. B. A. Boxall, D. W. Kolpin, B. Halling–Sørensen, J. Tolls, Environ. Sci. Technol. 2003, 37, 286A.
dc.identifier.citedreferenceQ.-Q. Zhang, G.-G. Ying, C.-G. Pan, Y.-S. Liu, J.-L. Zhao, Environ. Sci. Technol. 2015, 49, 6772.
dc.identifier.citedreferenceC. Li, W. Yang, X. Zhang, Y. Han, W. Tang, T. Yue, Z. Li, J. Mater. Chem. C 2020, 8, 2054.
dc.identifier.citedreferenceY. Chen, Y. Zhang, T. Lyu, Y. Wang, X. Yang, X. Wu, J. Mater. Chem. C 2019, 7, 9241.
dc.identifier.citedreferenceA. H. Malik, P. K. Iyer, ACS Appl. Mater. Interfaces 2017, 9, 4433.
dc.identifier.citedreferenceS. Hussain, X. Chen, C. Wang, Y. Hao, X. Tian, Y. He, J. Li, M. Shahid, P. K. Iyer, R. Gao, Anal. Chem. 2022, 94, 10685.
dc.identifier.citedreferenceU. Chitgupi, N. Nyayapathi, J. Kim, D. Wang, B. Sun, C. Li, K. Carter, W.–C. Huang, C. Kim, J. Xia, J. F. Lovell, Adv. Mater. 2019, 31, 1902279.
dc.identifier.citedreferenceY. Zhang, W. Song, J. Geng, U. Chitgupi, H. Unsal, J. Federizon, J. Rzayev, D. K. Sukumaran, P. Alexandridis, J. F. Lovell, Nat. Commun. 2016, 7, 11649.
dc.identifier.citedreferenceW. Huang, E. Smarsly, J. Han, M. Bender, K. Seehafer, I. Wacker, R. R. Schröder, U. H. F. Bunz, ACS Appl. Mater. Interfaces 2017, 9, 3068.
dc.identifier.citedreferenceX. Chen, S. Hussain, X. Chen, Y. Hao, P. Zhang, R. Gao, Sens. Actuators, B 2023, 377, 133081.
dc.identifier.citedreferenceL. Jiang, X. Chen, N. Lu, L. Chi, Acc. Chem. Res. 2014, 47, 3009.
dc.identifier.citedreferenceP. L. Donabedian, M. N. Creyer, F. A. Monge, K. S. Schanze, E. Y. Chi, D. G. Whitten, Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 7278.
dc.identifier.citedreferenceC. Du, D. Gao, M. Gao, H. Yuan, X. Liu, B. Wang, C. Xing, ACS Appl. Mater. Interfaces 2021, 13, 27955.
dc.identifier.citedreferenceG. Rainò, T. Stöferle, C. Park, H.-C. Kim, I.-J. Chin, R. D. Miller, R. F. Mahrt, Adv. Mater. 2010, 22, 3681.
dc.identifier.citedreferenceX.–H. Jin, M. B. Price, J. R. Finnegan, C. E. Boott, J. M. Richter, A. Rao, S. M. Menke, R. H. Friend, G. R. Whittell, I. Manners, Science 2018, 360, 897.
dc.identifier.citedreferenceP. N. Hurter, T. A. Hatton, Langmuir 1992, 8, 1291.
dc.identifier.citedreferenceS.; Hussain, A. H. M., P. K. Iyer, J. Mater. Chem. B 2016, 4, 4439.
dc.identifier.citedreferenceM. Gilbert, B. Albinsson, Chem. Soc. Rev. 2015, 44, 845.
dc.identifier.citedreferenceS. Hussain, A. H. Malik, M. A. Afroz, P. K. Iyer, Chem. Commun. 2015, 51, 7207.
dc.identifier.citedreferenceD. Li, H. Zhang, Y. Wang, Chem. Soc. Rev. 2013, 42, 8416.
dc.identifier.citedreferenceL. Ying, C.-L. Ho, H. Wu, Y. Cao, W.-Y. Wong, Adv. Mater. 2014, 26, 2459.
dc.identifier.citedreferenceA. H. Malik, A. Kalita, P. K. Iyer, ACS Appl. Mater. Interfaces 2017, 9, 37501.
dc.identifier.citedreferenceS. Parola, B. Julián–López, L. D. Carlos, C. Sanchez, Adv. Funct. Mater. 2016, 26, 6506.
dc.identifier.citedreferenceN. Mehwish, X. Dou, Y. Zhao, C.-L. Feng, Mater. Horiz. 2019, 6, 14.
dc.identifier.citedreferenceY. Li, D. J. Young, X. J. Loh, Mater. Chem. Front. 2019, 3, 1489.
dc.identifier.citedreferenceS. Wei, Z. Li, W. Lu, H. Liu, J. Zhang, T. Chen, B. Z. Tang, Angew. Chem., Int. Ed. 2021, 60, 8608.
dc.identifier.citedreferenceW. Lu, S. Wei, H. Shi, X. Le, G. Yin, T. Chen, Aggregate 2021, 2, e37.
dc.identifier.citedreferenceE. Elmalem, F. Biedermann, M. R. J. Scherer, A. Koutsioubas, C. Toprakcioglu, G. Biffi, W. T. S. Huck, Chem. Commun. 2014, 50, 8930.
dc.identifier.citedreferenceH. Yuan, Y. Zhan, A. E. Rowan, C. Xing, P. H. J. Kouwer, Angew. Chem., Int. Ed. 2020, 59, 2720.
dc.identifier.citedreferenceT. Kai, M. Kishimoto, M. Akita, M. Yoshizawa, Chem. Commun. 2018, 54, 956.
dc.identifier.citedreferenceH.-G. Fu, Y. Chen, X. Y. Dai, Y. Liu, Adv. Opt. Mater. 2020, 8, 2000220.
dc.identifier.citedreferenceJ. L. Martinez, Environ. Pollut. 2009, 157, 2893.
dc.identifier.citedreferenceO. Ostroverkhova, Chem. Rev. 2016, 116, 13279.
dc.identifier.citedreferenceL. Zhou, F. Lv, L. Liu, S. Wang, Acc. Chem. Res. 2019, 52, 3211.
dc.identifier.citedreferenceP.-O. Morin, T. Bura, M. Leclerc, Mater. Horiz. 2016, 3, 11.
dc.identifier.citedreferenceQ. Zhou, T. M. Swager, J. Am. Chem. Soc. 1995, 117, 12593.
dc.identifier.citedreferenceS. W. Thomas, G. D. Joly, T. M. Swager, Chem. Rev. 2007, 107, 1339.
dc.identifier.citedreferenceX. Chen, S. Hussain, Y. Hao, X. Tian, R. Gao, ECS J. Solid State Sci. Technol. 2021, 10, 037006.
dc.identifier.citedreferenceH. Zhong, C. Liu, W. Ge, R. Sun, F. Huang, X. Wang, ACS Appl. Mater. Interfaces 2017, 9, 22875.
dc.identifier.citedreferenceJ. Wang, F. Lv, L. Liu, Y. Ma, S. Wang, Coord. Chem. Rev. 2018, 354, 135.
dc.identifier.citedreferenceW. Wu, G. C. Bazan, B. Liu, Chem 2017, 2, 760.
dc.identifier.citedreferenceY. Huang, J. Xing, Q. Gong, L.–C. Chen, G. Liu, C. Yao, Z. Wang, H.–L. Zhang, Z. Chen, Q. Zhang, Nat. Commun. 2019, 10, 169.
dc.identifier.citedreferenceS. R. Amrutha, M. Jayakannan, J. Phys. Chem. B 2008, 112, 1119.
dc.identifier.citedreferenceD. Wang, Y. Yuan, Y. Mardiyati, C. Bubeck, K. Koynov, Macromolecules 2013, 46, 6217.
dc.identifier.citedreferenceJ. Luo, Z. Xie, J. W. Y. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.
dc.identifier.citedreferenceR. Hu, N. L. C. Leung, B. Z. Tang, Chem. Soc. Rev. 2014, 43, 4494.
dc.identifier.citedreferenceX. Cai, B. Liu, Angew. Chem., Int. Ed. 2020, 59, 9868.
dc.identifier.citedreferenceL. Xu, Z. Wang, R. Wang, L. Wang, X. He, H. Jiang, H. Tang, D. Cao, B. Z. Tang, Angew. Chem., Int. Ed. 2019, 59, 9908.
dc.identifier.citedreferenceT. Zhou, R. Hu, L. Wang, Y. Qiu, G. Zhang, Q. Deng, H. Zhang, P. Yin, B. Situ, C. Zhan, A. Qin, B. Z. Tang, Angew. Chem., Int. Ed. 2020, 59, 9952.
dc.identifier.citedreferenceF. Qiu, C. Tu, R. Wang, L. Zhu, Y. Chen, G. Tong, B. Zhu, L. He, D. Yan, X. Zhu, Chem. Commun. 2011, 47, 9678.
dc.identifier.citedreferenceY. Zhang, Z. Li, Q. Sun, Z. Li, Y. Zhi, R. Nie, H. Xia, Y. Yu, X. Liu, Macromol. Rapid Commun. 2021, 42, 2100469.
dc.identifier.citedreferenceN. Alizadeh, A. Akbarinejad, A. Ghoorchian, ACS Appl. Mater. Interfaces 2016, 8, 24901.
dc.identifier.citedreferenceJ. Zhang, A. Mohsin, Y. Peng, Y. Dai, Y. Zhuang, M. Guo, P. Zhao, ACS Appl. Mater. Interfaces 2021, 13, 3512.
dc.identifier.citedreferenceC. Zhu, L. Liu, Q. Yang, F. Lv, S. Wang, Chem. Rev. 2012, 112, 4687.
dc.identifier.citedreferenceL. Xu, Z. Wang, R. Wang, L. Wang, X. He, H. Jiang, H. Tang, D. Cao, B. Z. Tang, Angew. Chem., Int. Ed. 2020, 59, 9908.
dc.identifier.citedreferenceX. Ji, Y. Yao, J. Li, X. Yan, F. Huang, J. Am. Chem. Soc. 2013, 135, 74.
dc.identifier.citedreferenceC. Li, X. Zhang, S. Wen, R. Xiang, Y. Han, W. Tang, T. Yue, Z. Li, J. Hazard. Mater. 2020, 395, 122615.
dc.identifier.citedreferenceM. Lin, H. Y. Zou, T. Yang, Z. X. Liu, H. Liu, Huang, C. Z., Nanoscale 2016, 8, 2999.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.