Show simple item record

PAX9 mutations and genetic synergism in familial tooth agenesis

dc.contributor.authorChu, Kuan-Yu
dc.contributor.authorWang, Yin-Lin
dc.contributor.authorChen, Jung-Tsu
dc.contributor.authorLin, Chia-Hui
dc.contributor.authorYao, Chung-Chen Jane
dc.contributor.authorChen, Yi-Jane
dc.contributor.authorChen, Huan-Wen
dc.contributor.authorSimmer, James P.
dc.contributor.authorHu, Jan C.-C.
dc.contributor.authorWang, Shih-Kai
dc.date.accessioned2023-07-14T13:57:17Z
dc.date.available2024-07-14 09:57:15en
dc.date.available2023-07-14T13:57:17Z
dc.date.issued2023-06
dc.identifier.citationChu, Kuan-Yu ; Wang, Yin-Lin ; Chen, Jung-Tsu ; Lin, Chia-Hui ; Yao, Chung-Chen Jane ; Chen, Yi-Jane ; Chen, Huan-Wen ; Simmer, James P.; Hu, Jan C.-C. ; Wang, Shih-Kai (2023). "PAX9 mutations and genetic synergism in familial tooth agenesis." Annals of the New York Academy of Sciences 1524(1): 87-96.
dc.identifier.issn0077-8923
dc.identifier.issn1749-6632
dc.identifier.urihttps://hdl.handle.net/2027.42/177269
dc.description.abstractFamilial tooth agenesis (FTA) is one of the most common craniofacial anomalies in humans. Loss-of-function mutations in PAX9 and WNT10A have been known to cause FTA with various expressivity. In this study, we identified five FTA kindreds with novel PAX9 disease-causing mutations: p.(Glu7Lys), p.(Val83Leu), p.(Pro118Ser), p.(Ser197Argfs*23), and c.771+4A>G. Concomitant PAX9 and WNT10A pathogenic variants found in two probands with severe phenotypes suggested an effect of mutational synergism. All overexpressed PAX9s showed proper nuclear localization, excepting the p.(Pro118Ser) mutant. Various missense mutations caused differential loss of PAX9 transcriptional ability. PAX9 overexpression in dental pulp cells upregulated LEF1 and AXIN2 expression, indicating a positive regulatory role for PAX9 in canonical Wnt signaling. Analyzing 176 cases with 63 different mutations, we observed a distinct pattern of tooth agenesis for PAX9-associated FTA: Maxillary teeth are in general more frequently affected than mandibular ones. Along with all second molars, maxillary bicuspids and first molars are mostly involved, while maxillary lateral incisors and mandibular bicuspids are relatively less affected. Genotypically, missense mutations are associated with fewer missing teeth than frameshift and nonsense variants. This study significantly expands the phenotypic and genotypic spectrums of PAX9-associated disorders and reveals a molecular mechanism of genetic synergism underlying FTA variable expressivity.Familial tooth agenesis (FTA) is one of the most common craniofacial anomalies in humans. Loss-of-function mutations in PAX9 and WNT10A have been known to cause FTA with various expressivity. In this study, we identified 5 FTA kindreds with novel PAX9 disease-causing mutations. Concomitant PAX9 and WNT10A pathogenic variants found in two probands with severe phenotypes suggested an effect of mutational synergism.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherWnt signaling
dc.subject.othertranscription factor
dc.subject.otheroligodontia
dc.subject.otherhypodontia
dc.subject.othergenotype–phenotype correlation
dc.subject.otherWNT10A
dc.titlePAX9 mutations and genetic synergism in familial tooth agenesis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelScience (General)
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177269/1/nyas14988_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177269/2/nyas14988-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177269/3/nyas14988.pdf
dc.identifier.doi10.1111/nyas.14988
dc.identifier.sourceAnnals of the New York Academy of Sciences
dc.identifier.citedreferenceJho, E. H., Zhang, T., Domon, C., Joo, C. K., Freund, J. N., & Costantini, F. ( 2002 ). Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Molecular and Cellular Biology, 22, 1172 – 1183.
dc.identifier.citedreferenceBohring, A., Stamm, T., Spaich, C., Haase, C., Spree, K., Hehr, U., Hoffmann, M., Ledig, S., Sel, S., Wieacker, P., & Röpke, A. ( 2009 ). WNT10A mutations are a frequent cause of a broad spectrum of ectodermal dysplasias with sex-biased manifestation pattern in heterozygotes. American Journal of Human Genetics, 85, 97 – 105.
dc.identifier.citedreferenceMassink, M. P., Créton, M. A., Spanevello, F., Fennis, W. M., Cune, M. S., Savelberg, S. M., Nijman, I. J., Maurice, M. M., van den Boogaard, M. J., & van Haaften, G. ( 2015 ). Loss-of-function mutations in the WNT co-receptor LRP6 cause autosomal-dominant oligodontia. American Journal of Human Genetics, 97, 621 – 626.
dc.identifier.citedreferenceFournier, B. P., Bruneau, M. H., Toupenay, S., Kerner, S., Berdal, A., Cormier-Daire, V., Hadj-Rabia, S., Coudert, A. E., & de La Dure-Molla, M. ( 2018 ). Patterns of dental agenesis highlight the nature of the causative mutated genes. Journal of Dental Research, 97, 1306 – 1316.
dc.identifier.citedreferenceKim, J. W., Simmer, J. P., Lin, B. P., & Hu, J. C. ( 2006 ). Novel MSX1 frameshift causes autosomal-dominant oligodontia. Journal of Dental Research, 85, 267 – 271.
dc.identifier.citedreferenceZhou, M., Zhang, H., Camhi, H., Seymen, F., Koruyucu, M., Kasimoglu, Y., Kim, J. W., Kim-Berman, H., Yuson, N. M. R., Benke, P. J., Wu, Y., Wang, F., Zhu, Y., Simmer, J. P., & Hu, J. C. ( 2021 ). Analyses of oligodontia phenotypes and genetic etiologies. International Journal of Oral Science, 13, 32.
dc.identifier.citedreferenceWong, S. W., Han, D., Zhang, H., Liu, Y., Zhang, X., Miao, M. Z., Wang, Y., Zhao, N., Zeng, L., Bai, B., Wang, Y. X., Liu, H., Frazier-Bowers, S. A., & Feng, H. ( 2018 ). Nine novel PAX9 mutations and a distinct tooth agenesis genotype–phenotype. Journal of Dental Research, 97, 155 – 162.
dc.identifier.citedreferenceHe, H., Han, D., Feng, H., Qu, H., Song, S., Bai, B., & Zhang, Z. ( 2013 ). Involvement of and interaction between WNT10A and EDA mutations in tooth agenesis cases in the Chinese population. PLoS ONE, 8, e80393.
dc.identifier.citedreferenceChu, K. Y., Wang, Y. L., Chou, Y. R., Chen, J. T., Wang, Y. P., Simmer, J. P., Hu, J. C., & Wang, S. K. ( 2021 ). Synergistic mutations of LRP6 and WNT10A in familial tooth agenesis. Journal of Personalized Medicine, 11 ( 11 ), 1217.
dc.identifier.citedreferencePérez-Pérez, J. M., Candela, H., & Micol, J. L. ( 2009 ). Understanding synergy in genetic interactions. Trends in Genetics, 25, 368 – 376.
dc.identifier.citedreferenceArte, S., Parmanen, S., Pirinen, S., Alaluusua, S., & Nieminen, P. ( 2013 ). Candidate gene analysis of tooth agenesis identifies novel mutations in six genes and suggests significant role for WNT and EDA signaling and allele combinations. PLoS ONE, 8, e73705.
dc.identifier.citedreferenceTompson, S. W., & Young, T. L. ( 2017 ). Assaying the effects of splice site variants by exon trapping in a mammalian cell line. Bio Protocol, 7 ( 10 ), e2281.
dc.identifier.citedreferenceCzerny, T., Schaffner, G., & Busslinger, M. ( 1993 ). DNA sequence recognition by Pax proteins: Bipartite structure of the paired domain and its binding site. Genes & Development, 7, 2048 – 2061.
dc.identifier.citedreferenceChen, J. T., Lin, C. H., Huang, H. W., Wang, Y. P., Kao, P. C., Yang, T. P., & Wang, S. K. ( 2021 ). Novel REST truncation mutations causing hereditary gingival fibromatosis. Journal of Dental Research, 100, 868 – 874.
dc.identifier.citedreferenceKarczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G. ( 2020 ). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581, 434 – 443.
dc.identifier.citedreferenceChen, C. H., Yang, J. H., Chiang, C. W. K., Hsiung, C. N., Wu, P. E., Chang, L. C., Chu, H. W., Chang, J., Song, I. W., Yang, S. L., Chen, Y. T., Liu, F. T., & Shen, C. Y. ( 2016 ). Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan Biobank project. Human Molecular Genetics, 25, 5321 – 5331.
dc.identifier.citedreferenceAdzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., Kondrashov, A. S., & Sunyaev, S. R. ( 2010 ). A method and server for predicting damaging missense mutations. Nature Methods, 7, 248 – 249.
dc.identifier.citedreferenceSim, N. L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. ( 2012 ). SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40, W452 – W457.
dc.identifier.citedreferenceSteinhaus, R., Proft, S., Schuelke, M., Cooper, D. N., Schwarz, J. M., & Seelow, D. ( 2021 ). MutationTaster2021. Nucleic Acids Research, 49, W446 – W451.
dc.identifier.citedreferenceJuuri, E., & Balic, A. ( 2017 ). The biology underlying abnormalities of tooth number in humans. Journal of Dental Research, 96, 1248 – 1256.
dc.identifier.citedreferenceHovorakova, M., Lesot, H., Peterka, M., & Peterkova, R. ( 2018 ). Early development of the human dentition revisited. Journal of Anatomy, 233, 135 – 145.
dc.identifier.citedreferenceKist, R., Watson, M., Wang, X., Cairns, P., Miles, C., Reid, D. J., & Peters, H. ( 2005 ). Reduction of Pax9 gene dosage in an allelic series of mouse mutants causes hypodontia and oligodontia. Human Molecular Genetics, 14, 3605 – 3617.
dc.identifier.citedreferenceKantaputra, P., Kaewgahya, M., Jotikasthira, D., & Kantaputra, W. ( 2014 ). Tricho-odonto-onycho-dermal dysplasia and WNT10A mutations. American Journal of Medical Genetics. Part A, 164a, 1041 – 1048.
dc.identifier.citedreferenceTardieu, C., Jung, S., Niederreither, K., Prasad, M., Hadj-Rabia, S., Philip, N., Mallet, A., Consolino, E., Sfeir, E., Noueiri, B., Chassaing, N., Dollfus, H., Manière, M. C., Bloch-Zupan, A., & Clauss, F. ( 2017 ). Dental and extra-oral clinical features in 41 patients with WNT10A gene mutations: A multicentric genotype–phenotype study. Clinical Genetics, 92, 477 – 486.
dc.identifier.citedreferenceYang, J., Wang, S. K., Choi, M., Reid, B. M., Hu, Y., Lee, Y. L., Herzog, C. R., Kim-Berman, H., Lee, M., Benke, P. J., Lloyd, K. C., Simmer, J. P., & Hu, J. C. ( 2015 ). Taurodontism, variations in tooth number, and misshapened crowns in Wnt10a null mice and human kindreds. Molecular Genetics & Genomic Medicine, 3, 40 – 58.
dc.identifier.citedreferenceSong, S., Zhao, R., He, H., Zhang, J., Feng, H., & Lin, L. ( 2014 ). WNT10A variants are associated with non-syndromic tooth agenesis in the general population. Human Genetics, 133, 117 – 124.
dc.identifier.citedreferenceZeng, Y., Baugh, E., Akyalcin, S., & Letra, A. ( 2021 ). Functional effects of WNT10A rare variants associated with tooth agenesis. Journal of Dental Research, 100, 302 – 309.
dc.identifier.citedreferencePeters, H., Neubüser, A., Kratochwil, K., & Balling, R. ( 1998 ). Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes & Development, 12, 2735 – 2747.
dc.identifier.citedreferenceLiu, F., Chu, E. Y., Watt, B., Zhang, Y., Gallant, N. M., Andl, T., Yang, S. H., Lu, M. M., Piccolo, S., Schmidt-Ullrich, R., Taketo, M. M., Morrisey, E. E., Atit, R., Dlugosz, A. A., & Millar, S. E. ( 2008 ). Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Developmental Biology, 313, 210 – 224.
dc.identifier.citedreferenceChen, J., Lan, Y., Baek, J. A., Gao, Y., & Jiang, R. ( 2009 ). Wnt/beta-catenin signaling plays an essential role in activation of odontogenic mesenchyme during early tooth development. Developmental Biology, 334, 174 – 185.
dc.identifier.citedreferenceLi, C., Lan, Y., Krumlauf, R., & Jiang, R. ( 2017 ). Modulating Wnt signaling rescues palate morphogenesis in Pax9 mutant mice. Journal of Dental Research, 96, 1273 – 1281.
dc.identifier.citedreferenceNieminen, P. ( 2009 ). Genetic basis of tooth agenesis. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 312b, 320 – 342.
dc.identifier.citedreferenceVastardis, H., Karimbux, N., Guthua, S. W., Seidman, J. G., & Seidman, C. E. ( 1996 ). A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nature Genetics, 13, 417 – 421.
dc.identifier.citedreferenceStockton, D. W., Das, P., Goldenberg, M., D’Souza, R. N., & Patel, P. I. ( 2000 ). Mutation of PAX9 is associated with oligodontia. Nature Genetics, 24, 18 – 19.
dc.identifier.citedreferenceLammi, L., Arte, S., Somer, M., Jarvinen, H., Lahermo, P., Thesleff, I., Pirinen, S., & Nieminen, P. ( 2004 ). Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. American Journal of Human Genetics, 74, 1043 – 1050.
dc.identifier.citedreferenceSong, S., Han, D., Qu, H., Gong, Y., Wu, H., Zhang, X., Zhong, N., & Feng, H. ( 2009 ). EDA gene mutations underlie non-syndromic oligodontia. Journal of Dental Research, 88, 126 – 131.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.