Accounting for Changes in Radiation Improves the Ability of SIF to Track Water Stress-Induced Losses in Summer GPP in a Temperate Deciduous Forest
dc.contributor.author | Butterfield, Zachary | |
dc.contributor.author | Magney, Troy | |
dc.contributor.author | Grossmann, Katja | |
dc.contributor.author | Bohrer, Gil | |
dc.contributor.author | Vogel, Chris | |
dc.contributor.author | Barr, Stephen | |
dc.contributor.author | Keppel-Aleks, Gretchen | |
dc.date.accessioned | 2023-07-14T13:57:19Z | |
dc.date.available | 2024-08-14 09:57:18 | en |
dc.date.available | 2023-07-14T13:57:19Z | |
dc.date.issued | 2023-07 | |
dc.identifier.citation | Butterfield, Zachary; Magney, Troy; Grossmann, Katja; Bohrer, Gil; Vogel, Chris; Barr, Stephen; Keppel-Aleks, Gretchen (2023). "Accounting for Changes in Radiation Improves the Ability of SIF to Track Water Stress- Induced Losses in Summer GPP in a Temperate Deciduous Forest." Journal of Geophysical Research: Biogeosciences 128(7): n/a-n/a. | |
dc.identifier.issn | 2169-8953 | |
dc.identifier.issn | 2169-8961 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/177270 | |
dc.description.abstract | Global observations of solar-induced chlorophyll fluorescence (SIF) are available from multiple satellite platforms, and SIF is increasingly used as a proxy for photosynthetic activity and ecosystem productivity. Because the relationship between SIF and gross primary productivity (GPP) depends on a variety of factors including ecosystem type and environmental conditions, it is necessary to study SIF observations across various spatiotemporal scales and ecosystems. To explore how SIF signals relate to productivity over a temperate deciduous forest, we deployed a PhotoSpec spectrometer system at the University of Michigan Biological Station AmeriFlux site (US-UMB) in the northern Lower Peninsula of Michigan during the 2018 and 2019 growing seasons. We found that SIF correlated with GPP across diurnal and seasonal cycles (R2 = 0.61 and 0.64 for 90-min- and daily-averaged data), but that SIF signals were more strongly related to downwelling radiation than GPP (R2 = 0.91 for daily-averaged data). The dependence of SIF on radiation obscured the impact of intraseasonal drought in the SIF timeseries, but drought stress was apparent as a decrease in relative SIF, which exhibited a stronger correlation with GPP (R2 = 0.56) than other remotely sensed data over the drought period. These results highlight the potential of SIF for detecting stress-induced losses in forest productivity. Additionally, we found that the red:far-red SIF ratio did not exhibit a response to water stress-induced losses in productivity, but was largely driven by seasonal and interannual changes in canopy structure, as well as by synoptic changes in downwelling radiation.Plain Language SummarySatellite measurements of solar-induced chlorophyll fluorescence (SIF), a faint light signal emitted from vegetation during photosynthesis, are increasingly being used to estimate ecosystem productivity and carbon uptake. To accurately do so requires a robust understanding of how the relationship between SIF and plant productivity changes over time, in response to environmental stressors, and across different ecosystems. To better understand SIF signals and how they relate to carbon uptake over a temperate deciduous forest, we used a high-precision spectrometer system to observe SIF signals at an AmeriFlux site (US-UMB) in the northern Lower Peninsula of Michigan. While the shared dependence of SIF and ecosystem productivity on sunlight lead to strong daily and seasonal correlations, we found that SIF signals were more closely tied to the amount of incoming sunlight than to ecosystem productivity. Despite the stronger dependence of SIF on sunlight, we show that drought conditions lead to a lower SIF relative to the total light signal. Lastly, we show that the observation of SIF at multiple wavelengths may provide additional information on seasonal and interannual changes in canopy structure. Our results demonstrate the value and limitations in using SIF to assess carbon dynamics over temperate deciduous forest ecosystems.Key PointsSolar-induced chlorophyll fluorescence above a temperate deciduous forest is more strongly tied to radiation than to productivityRelative solar-induced fluorescence signals track water stress-induced summer losses in productivity better than absolute fluorescenceThe ratio of red to far-red solar-induced fluorescence is sensitive to phenological changes in canopy structure and downwelling radiation | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Goddard Earth Sciences Data and Information Services Center (GES DISC) | |
dc.subject.other | solar-induced chlorophyll fluorescence | |
dc.subject.other | gross primary production | |
dc.subject.other | temperate deciduous forest | |
dc.subject.other | remote sensing | |
dc.subject.other | flux observations | |
dc.subject.other | water stress | |
dc.title | Accounting for Changes in Radiation Improves the Ability of SIF to Track Water Stress-Induced Losses in Summer GPP in a Temperate Deciduous Forest | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/177270/1/jgrg22516.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/177270/2/jgrg22516_am.pdf | |
dc.identifier.doi | 10.1029/2022JG007352 | |
dc.identifier.source | Journal of Geophysical Research: Biogeosciences | |
dc.identifier.citedreference | Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. ( 2004 ). A continuous satellite-derived measure of global terrestrial primary production. AIBS Bulletin, 54 ( 6 ), 547 – 560. https://doi.org/10.1641/0006-3568(2004)054[0547:acsmog]2.0.co;2 | |
dc.identifier.citedreference | Marrs, J. K., Reblin, J. S., Logan, B. A., Allen, D. W., Reinmann, A. B., Bombard, D. M., et al. ( 2020 ). Solar-induced fluorescence does not track photosynthetic carbon assimilation following induced stomatal closure. Geophysical Research Letters, 47 ( 15 ), e2020GL087956. https://doi.org/10.1029/2020gl087956 | |
dc.identifier.citedreference | Matheny, A. M., Bohrer, G., Vogel, C. S., Morin, T. H., He, L., Frasson, R. P. D. M., et al. ( 2014 ). Species-specific transpiration responses to intermediate disturbance in a northern hardwood forest. Journal of Geophysical Research: Biogeosciences, 119 ( 12 ), 2292 – 2311. https://doi.org/10.1002/2014jg002804 | |
dc.identifier.citedreference | Matheny, A. M., Fiorella, R. P., Bohrer, G., Poulsen, C. J., Morin, T. H., Wunderlich, A., et al. ( 2017 ). Contrasting strategies of hydraulic control in two codominant temperate tree species. Ecohydrology, 10 ( 3 ), e1815. https://doi.org/10.1002/eco.1815 | |
dc.identifier.citedreference | Miao, G., Guan, K., Yang, X., Bernacchi, C. J., Berry, J. A., DeLucia, E. H., et al. ( 2018 ). Sun-induced chlorophyll fluorescence, photosynthesis, and light use efficiency of a soybean field from seasonally continuous measurements. Journal of Geophysical Research: Biogeosciences, 123 ( 2 ), 610 – 623. https://doi.org/10.1002/2017jg004180 | |
dc.identifier.citedreference | Monteith, J. L. ( 1977 ). Climate and the efficiency of crop production in Britain. Philosophical Transactions of the Royal Society of London B Biological Sciences, 281 ( 980 ), 277 – 294. | |
dc.identifier.citedreference | Morin, T. H., Bohrer, G., Frasson, R. P. D. M., Naor-Azreli, L., Mesi, S., Stefanik, K. C., & Schäfer, K. V. R. ( 2014 ). Environmental drivers of methane fluxes from an urban temperate wetland park. Journal of Geophysical Research: Biogeosciences, 119 ( 11 ), 2188 – 2208. https://doi.org/10.1002/2014jg002750 | |
dc.identifier.citedreference | OCO-2 Science Team, Gunson, M., & Eldering, A. ( 2017 ). OCO-2 Level 2 bias-corrected solar-induced fluorescence and other select fields from the IMAP-DOAS algorithm aggregated as daily files, Retrospective processing V8r [Dataset]. Goddard Earth Sciences Data and Information Services Center (GES DISC). https://doi.org/10.5067/AJMZO5O3TGUR | |
dc.identifier.citedreference | Pierrat, Z., Magney, T., Parazoo, N. C., Grossmann, K., Bowling, D. R., Seibt, U., et al. ( 2022 ). Diurnal and seasonal dynamics of solar-induced chlorophyll fluorescence, vegetation indices, and gross primary productivity in the boreal forest. Journal of Geophysical Research: Biogeosciences, 127 ( 2 ), e2021JG006588. https://doi.org/10.1029/2021jg006588 | |
dc.identifier.citedreference | Rebmann, C., Kolle, O., Heinesch, B., Queck, R., Ibrom, A., & Aubinet, M. ( 2012 ). Data acquisition and flux calculations. In Eddy covariance (pp. 59 – 83 ). Springer. | |
dc.identifier.citedreference | Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., et al. ( 2005 ). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Global Change Biology, 11 ( 9 ), 1424 – 1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x | |
dc.identifier.citedreference | Ryu, Y., Berry, J. A., & Baldocchi, D. D. ( 2019 ). What is global photosynthesis? History, uncertainties and opportunities. Remote Sensing of Environment, 223, 95 – 114. https://doi.org/10.1016/j.rse.2019.01.016 | |
dc.identifier.citedreference | Smith, N. E., Kooijmans, L. M. J., Koren, G., Van Schaik, E., van Der Woude, A. M., Wanders, N., et al. ( 2020 ). Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern Europe. Philosophical Transactions of the Royal Society B, 375 ( 1810 ), 20190509. https://doi.org/10.1098/rstb.2019.0509 | |
dc.identifier.citedreference | Song, L., Guanter, L., Guan, K., You, L., Huete, A., Ju, W., & Zhang, Y. ( 2018 ). Satellite sun-induced chlorophyll fluorescence detects early response of winter wheat to heat stress in the Indian Indo-Gangetic Plains. Global Change Biology, 24 ( 9 ), 4023 – 4037. https://doi.org/10.1111/gcb.14302 | |
dc.identifier.citedreference | Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., & Magney, T. ( 2018 ). Overview of solar-induced chlorophyll fluorescence (SIF) from the orbiting carbon observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP. Remote Sensing of Environment, 209, 808 – 823. https://doi.org/10.1016/j.rse.2018.02.016 | |
dc.identifier.citedreference | Sun, Y., Frankenberg, C., Wood, J. D., Schimel, D. S., Jung, M., Guanter, L., et al. ( 2017 ). OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 358 ( 6360 ), eaam5747. https://doi.org/10.1126/science.aam5747 | |
dc.identifier.citedreference | Sun, Y., Fu, R., Dickinson, R., Joiner, J., Frankenberg, C., Gu, L., et al. ( 2015 ). Drought onset mechanisms revealed by satellite solar-induced chlorophyll fluorescence: Insights from two contrasting extreme events. Journal of Geophysical Research: Biogeosciences, 120 ( 11 ), 2427 – 2440. https://doi.org/10.1002/2015jg003150 | |
dc.identifier.citedreference | Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., et al. ( 2002 ). The drought monitor. Bulletin of the American Meteorological Society, 83 ( 8 ), 1181 – 1190. https://doi.org/10.1175/1520-0477-83.8.1181 | |
dc.identifier.citedreference | Tucker, C. J. ( 1979 ). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8 ( 2 ), 127 – 150. https://doi.org/10.1016/0034-4257(79)90013-0 | |
dc.identifier.citedreference | Wohlfahrt, G., Gerdel, K., Migliavacca, M., Rotenberg, E., Tatarinov, F., Müller, J., et al. ( 2018 ). Sun-induced fluorescence and gross primary productivity during a heat wave. Scientific Reports, 8 ( 1 ), 14169. https://doi.org/10.1038/s41598-018-32602-z | |
dc.identifier.citedreference | Wolanin, A., Rozanov, V. v., Dinter, T., Noël, S., Vountas, M., Burrows, J. P., & Bracher, A. ( 2015 ). Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements: Feasibility study and first results. Remote Sensing of Environment, 166, 243 – 261. https://doi.org/10.1016/j.rse.2015.05.018 | |
dc.identifier.citedreference | Wozniak, M. C., Bonan, G. B., Keppel-Aleks, G., & Steiner, A. L. ( 2020 ). Influence of vertical heterogeneities in the canopy microenvironment on interannual variability of carbon uptake in temperate deciduous forests. Journal of Geophysical Research: Biogeosciences, 125 ( 8 ), e2020JG005658. https://doi.org/10.1029/2020jg005658 | |
dc.identifier.citedreference | Yang, K., Ryu, Y., Dechant, B., Berry, J. A., Hwang, Y., Jiang, C., et al. ( 2018 ). Sun-induced chlorophyll fluorescence is more strongly related to absorbed light than to photosynthesis at half-hourly resolution in a rice paddy. Remote Sensing of Environment, 216, 658 – 673. https://doi.org/10.1016/j.rse.2018.07.008 | |
dc.identifier.citedreference | Yang, X., Tang, J., Mustard, J. F., Lee, J., Rossini, M., Joiner, J., et al. ( 2015 ). Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophysical Research Letters, 42 ( 8 ), 2977 – 2987. https://doi.org/10.1002/2015gl063201 | |
dc.identifier.citedreference | Yazbeck, T., Bohrer, G., Gentine, P., Ye, L., Arriga, N., Bernhofer, C., et al. ( 2021 ). Site characteristics mediate the relationship between forest productivity and satellite measured solar induced fluorescence. Frontiers in Forests and Global Change, 193. https://doi.org/10.3389/ffgc.2021.695269 | |
dc.identifier.citedreference | Yoshida, Y., Joiner, J., Tucker, C., Berry, J., Lee, J.-E., Walker, G., et al. ( 2015 ). The 2010 Russian drought impact on satellite measurements of solar-induced chlorophyll fluorescence: Insights from modeling and comparisons with parameters derived from satellite reflectances. Remote Sensing of Environment, 166, 163 – 177. https://doi.org/10.1016/j.rse.2015.06.008 | |
dc.identifier.citedreference | Yu, L., Wen, J., Chang, C. Y., Frankenberg, C., & Sun, Y. ( 2019 ). High-resolution global contiguous SIF of OCO-2. Geophysical Research Letters, 46 ( 3 ), 1449 – 1458. https://doi.org/10.1029/2018gl081109 | |
dc.identifier.citedreference | Zeng, Y., Badgley, G., Dechant, B., Ryu, Y., Chen, M., & Berry, J. A. ( 2019 ). A practical approach for estimating the escape ratio of near-infrared solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 232, 111209. https://doi.org/10.1016/j.rse.2019.05.028 | |
dc.identifier.citedreference | Aron, P. G., Poulsen, C. J., Fiorella, R. P., & Matheny, A. M. ( 2019 ). Stable water isotopes reveal effects of intermediate disturbance and canopy structure on forest water cycling. Journal of Geophysical Research: Biogeosciences, 124 ( 10 ), 2958 – 2975. https://doi.org/10.1029/2019jg005118 | |
dc.identifier.citedreference | Baker, N. R. ( 2008 ). Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual Review of Plant Biology, 59 ( 1 ), 89 – 113. https://doi.org/10.1146/annurev.arplant.59.032607.092759 | |
dc.identifier.citedreference | Butterfield, Z., Buermann, W., & Keppel-Aleks, G. ( 2020 ). Satellite observations reveal seasonal redistribution of northern ecosystem productivity in response to interannual climate variability. Remote Sensing of Environment, 242, 111755. https://doi.org/10.1016/j.rse.2020.111755 | |
dc.identifier.citedreference | Butterfield, Z., Muccio, D., & Keppel-Aleks, G. ( 2022 ). Tower observations of solar-induced chlorophyll fluorescence at the University of Michigan Biological Station [Dataset]. University of Michigan - Deep Blue Data. https://doi.org/10.7302/sx8c-y281 | |
dc.identifier.citedreference | Datt, B. ( 1999 ). A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using Eucalyptus leaves. Journal of Plant Physiology, 154 ( 1 ), 30 – 36. https://doi.org/10.1016/S0176-1617(99)80314-9 | |
dc.identifier.citedreference | Dechant, B., Ryu, Y., Badgley, G., Zeng, Y., Berry, J. A., Zhang, Y., et al. ( 2020 ). Canopy structure explains the relationship between photosynthesis and sun-induced chlorophyll fluorescence in crops. Remote Sensing of Environment, 241, 111733. https://doi.org/10.1016/j.rse.2020.111733 | |
dc.identifier.citedreference | Fotis, A. T., Morin, T. H., Fahey, R. T., Hardiman, B. S., Bohrer, G., & Curtis, P. S. ( 2018 ). Forest structure in space and time: Biotic and abiotic determinants of canopy complexity and their effects on net primary productivity. Agricultural and Forest Meteorology, 250, 181 – 191. https://doi.org/10.1016/j.agrformet.2017.12.251 | |
dc.identifier.citedreference | Frankenberg, C., Butz, A., & Toon, G. C. ( 2011 ). Disentangling chlorophyll fluorescence from atmospheric scattering effects in O 2 A-band spectra of reflected sun-light. Geophysical Research Letters, 38 ( 3 ), L03801. https://doi.org/10.1029/2010gl045896 | |
dc.identifier.citedreference | Frankenberg, C., Fisher, J. B., Worden, J., Badgley, G., Saatchi, S. S., Lee, J., et al. ( 2011 ). New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophysical Research Letters, 38 ( 17 ), L17706. https://doi.org/10.1029/2011gl048738 | |
dc.identifier.citedreference | Frankenberg, C., O’Dell, C., Berry, J., Guanter, L., Joiner, J., Köhler, P., et al. ( 2014 ). Prospects for chlorophyll fluorescence remote sensing from the orbiting carbon observatory-2. Remote Sensing of Environment, 147, 1 – 12. https://doi.org/10.1016/j.rse.2014.02.007 | |
dc.identifier.citedreference | Frasson, R. P. D. M., Bohrer, G., Medvigy, D., Matheny, A. M., Morin, T. H., Vogel, C. S., et al. ( 2015 ). Modeling forest carbon cycle response to tree mortality: Effects of plant functional type and disturbance intensity. Journal of Geophysical Research: Biogeosciences, 120 ( 11 ), 2178 – 2193. https://doi.org/10.1002/2015jg003035 | |
dc.identifier.citedreference | Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Bakker, D. C. E., Hauck, J., et al. ( 2022 ). Global carbon budget 2021. Earth System Science Data, 14 ( 4 ), 1917 – 2005. https://doi.org/10.5194/essd-14-1917-2022 | |
dc.identifier.citedreference | Gamon, J. A., Field, C. B., Fredeen, A. L., & Thayer, S. ( 2001 ). Assessing photosynthetic downregulation in sunflower stands with an optically-based model. Photosynthesis Research, 67 ( 1–2 ), 113 – 125. https://doi.org/10.1023/a:1010677605091 | |
dc.identifier.citedreference | Gao, H., Liu, S., Lu, W., Smith, A. R., Valbuena, R., Yan, W., et al. ( 2021 ). Global analysis of the relationship between reconstructed solar-induced chlorophyll fluorescence (SIF) and gross primary production (GPP). Remote Sensing, 13 ( 14 ), 2824. https://doi.org/10.3390/rs13142824 | |
dc.identifier.citedreference | Gitelson, A. A., & Gamon, J. A. ( 2015 ). The need for a common basis for defining light-use efficiency: Implications for productivity estimation. Remote Sensing of Environment, 156, 196 – 201. https://doi.org/10.1016/j.rse.2014.09.017 | |
dc.identifier.citedreference | Gough, C. M., Bohrer, G., & Curtis, P. ( 2022 ). AmeriFlux BASE US-UMB Univ. of Mich. Biological station, ver. 18-5 [Dataset]. AmeriFlux AMP. https://doi.org/10.17190/AMF/1246107 | |
dc.identifier.citedreference | Gough, C. M., Hardiman, B. S., Nave, L. E., Bohrer, G., Maurer, K. D., Vogel, C. S., et al. ( 2013 ). Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest. Ecological Applications, 23 ( 5 ), 1202 – 1215. https://doi.org/10.1890/12-1554.1 | |
dc.identifier.citedreference | Grossmann, K., Frankenberg, C., Magney, T. S., Hurlock, S. C., Seibt, U., & Stutz, J. ( 2018 ). Remote sensing of environment PhotoSpec: A new instrument to measure spatially distributed red and far-red solar-induced chlorophyll fluorescence. Remote Sensing of Environment, 216 ( June ), 311 – 327. https://doi.org/10.1016/j.rse.2018.07.002 | |
dc.identifier.citedreference | Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P. E., Gómez-Dans, J., Kuze, A., et al. ( 2012 ). Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements. Remote Sensing of Environment, 121, 236 – 251. https://doi.org/10.1016/j.rse.2012.02.006 | |
dc.identifier.citedreference | He, L., Ivanov, V. Y., Bohrer, G., Maurer, K. D., Vogel, C. S., & Moghaddam, M. ( 2014 ). Effects of fine-scale soil moisture and canopy heterogeneity on energy and water fluxes in a northern temperate mixed forest. Agricultural and Forest Meteorology, 184, 243 – 256. https://doi.org/10.1016/j.agrformet.2013.10.006 | |
dc.identifier.citedreference | Joiner, J., Guanter, L., Lindstrot, R., Voigt, M., Vasilkov, A. P., Middleton, E. M., et al. ( 2013 ). Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmospheric Measurement Techniques, 6 ( 10 ), 2803 – 2823. https://doi.org/10.5194/amt-6-2803-2013 | |
dc.identifier.citedreference | Köcher, P., Gebauer, T., Horna, V., & Leuschner, C. ( 2009 ). Leaf water status and stem xylem flux in relation to soil drought in five temperate broad-leaved tree species with contrasting water use strategies. Annals of Forest Science, 66 ( 1 ), 1. https://doi.org/10.1051/forest/2008076 | |
dc.identifier.citedreference | Köhler, P., Behrenfeld, M. J., Landgraf, J., Joiner, J., Magney, T. S., & Frankenberg, C. ( 2020 ). Global retrievals of solar-induced chlorophyll fluorescence at red wavelengths with TROPOMI. Geophysical Research Letters, 47 ( 15 ), e2020GL087541. https://doi.org/10.1029/2020gl087541 | |
dc.identifier.citedreference | Köhler, P., Frankenberg, C., Magney, T. S., Guanter, L., Joiner, J., & Landgraf, J. ( 2018 ). Global retrievals of solar-induced chlorophyll fluorescence with TROPOMI: First results and intersensor comparison to OCO-2. Geophysical Research Letters, 45 ( 19 ), 10 – 456. https://doi.org/10.1029/2018gl079031 | |
dc.identifier.citedreference | Koren, G., Van Schaik, E., Araújo, A. C., Boersma, K. F., Gärtner, A., Killaars, L., et al. ( 2018 ). Widespread reduction in sun-induced fluorescence from the Amazon during the 2015/2016 El Niño. Philosophical Transactions of the Royal Society B: Biological Sciences, 373 ( 1760 ), 20170408. https://doi.org/10.1098/rstb.2017.0408 | |
dc.identifier.citedreference | Lascano, R., Sojka, R. E., & Evett, S. ( 2007 ). Soil water and monitoring technology. https://doi.org/10.2134/agronmonogr30.2ed.c2 | |
dc.identifier.citedreference | Lasslop, G., Reichstein, M., Papale, D., Richardson, A. D., Arneth, A., Barr, A., et al. ( 2010 ). Separation of net ecosystem exchange into assimilation and respiration using a light response curve approach: Critical issues and global evaluation. Global Change Biology, 16 ( 1 ), 187 – 208. https://doi.org/10.1111/j.1365-2486.2009.02041.x | |
dc.identifier.citedreference | Le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., et al. ( 2018 ). Global carbon budget 2017. Earth System Science Data, 10 ( 1 ), 405 – 448. https://doi.org/10.5194/essd-10-405-2018 | |
dc.identifier.citedreference | Li, X., Xiao, J., He, B., Altaf Arain, M., Beringer, J., Desai, A. R., et al. ( 2018 ). Solar-induced chlorophyll fluorescence is strongly correlated with terrestrial photosynthesis for a wide variety of biomes: First global analysis based on OCO-2 and flux tower observations. Global Change Biology, 24 ( 9 ), 3990 – 4008. https://doi.org/10.1111/gcb.14297 | |
dc.identifier.citedreference | Li, X., Xiao, J., Kimball, J. S., Reichle, R. H., Scott, R. L., Litvak, M. E., et al. ( 2020 ). Synergistic use of SMAP and OCO-2 data in assessing the responses of ecosystem productivity to the 2018 US drought. Remote Sensing of Environment, 251, 112062. https://doi.org/10.1016/j.rse.2020.112062 | |
dc.identifier.citedreference | Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M., et al. ( 2017 ). Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science, 358 ( 6360 ), eaam5690. https://doi.org/10.1126/science.aam5690 | |
dc.identifier.citedreference | Magney, T. S., Barnes, M. L., & Yang, X. ( 2020 ). On the covariation of chlorophyll fluorescence and photosynthesis across scales. Geophysical Research Letters, 47 ( 23 ), e2020GL091098. https://doi.org/10.1029/2020gl091098 | |
dc.identifier.citedreference | Magney, T. S., Bowling, D. R., Logan, B. A., Grossmann, K., Stutz, J., Blanken, P. D., et al. ( 2019 ). Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proceedings of the National Academy of Sciences, 116 ( 24 ), 11640 – 11645. https://doi.org/10.1073/pnas.1900278116 | |
dc.identifier.citedreference | Magney, T. S., Frankenberg, C., Köhler, P., North, G., Davis, T. S., Dold, C., et al. ( 2019 ). Disentangling changes in the spectral shape of chlorophyll fluorescence: Implications for remote sensing of photosynthesis. Journal of Geophysical Research: Biogeosciences, 124 ( 6 ), 1491 – 1507. https://doi.org/10.1029/2019jg005029 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.