Show simple item record

High-Throughput Optimization of Photochemical Reactions using Segmented-Flow Nanoelectrospray-Ionization Mass Spectrometry**

dc.contributor.authorSun, Alexandra C.
dc.contributor.authorSteyer, Daniel J.
dc.contributor.authorRobinson, Richard I.
dc.contributor.authorGinsburg-Moraff, Carol
dc.contributor.authorPlummer, Scott
dc.contributor.authorGao, Jinhai
dc.contributor.authorTucker, Joseph W.
dc.contributor.authorAlpers, Dirk
dc.contributor.authorStephenson, Corey R. J.
dc.contributor.authorKennedy, Robert T.
dc.date.accessioned2023-07-14T13:58:03Z
dc.date.available2024-08-14 09:58:00en
dc.date.available2023-07-14T13:58:03Z
dc.date.issued2023-07-10
dc.identifier.citationSun, Alexandra C.; Steyer, Daniel J.; Robinson, Richard I.; Ginsburg-Moraff, Carol ; Plummer, Scott; Gao, Jinhai; Tucker, Joseph W.; Alpers, Dirk; Stephenson, Corey R. J.; Kennedy, Robert T. (2023). "High- Throughput Optimization of Photochemical Reactions using Segmented- Flow Nanoelectrospray- Ionization Mass Spectrometry**." Angewandte Chemie 135(28): n/a-n/a.
dc.identifier.issn0044-8249
dc.identifier.issn1521-3757
dc.identifier.urihttps://hdl.handle.net/2027.42/177285
dc.description.abstractWithin the realm of drug discovery, high-throughput experimentation techniques enable the rapid optimization of reactions and expedited generation of drug compound libraries for biological and pharmacokinetic evaluation. Herein we report the development of a segmented flow mass spectrometry-based platform to enable the rapid exploration of photoredox reactions for early-stage drug discovery. Specifically, microwell plate-based photochemical reaction screens were reformatted to segmented flow format to enable delivery to nanoelectrospray ionization-mass spectrometry analysis. This approach was demonstrated for the late-stage modification of complex drug scaffolds, as well as the subsequent structure–activity relationship evaluation of synthesized analogs. This technology is anticipated to expand the robust capabilities of photoredox catalysis in drug discovery by enabling high-throughput library diversification.Segmented-flow mass spectrometry was used to enable the rapid screening of nanomole-scale photoredox reactions for drug discovery. Nanoelectrospray-ionization mass spectrometry analysis was carried out at throughputs as high as 2.9 samples/s, allowing for the late-stage modification of complex drug scaffolds as well as the subsequent structure–activity relationship (SAR) evaluation of prepared analogues.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMicrofluidics
dc.subject.otherMass Spectrometry
dc.subject.otherContinuous Flow
dc.subject.otherHigh-Throughput Experimentation
dc.subject.otherPhotocatalysis
dc.titleHigh-Throughput Optimization of Photochemical Reactions using Segmented-Flow Nanoelectrospray-Ionization Mass Spectrometry**
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177285/1/ange202301664.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177285/2/ange202301664-sup-0001-misc_information.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177285/3/ange202301664_am.pdf
dc.identifier.doi10.1002/ange.202301664
dc.identifier.sourceAngewandte Chemie
dc.identifier.citedreferenceC. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322.
dc.identifier.citedreferenceA. McNally, C. K. Prier, D. W. C. MacMillan, Science 2011, 334, 1114.
dc.identifier.citedreferenceM. Wleklinski, B. P. Loren, C. R. Ferreira, Z. Jaman, L. Avramova, T. J. P. Sobreira, D. H. Thompson, R. G. Cooks, Chem. Sci. 2018, 9, 1647.
dc.identifier.citedreferenceJ. W. Sawicki, A. R. Bogdan, P. A. Searle, N. Talaty, S. W. Djuric, React. Chem. Eng. 2019, 4, 1589.
dc.identifier.citedreferenceP. W. Fedick, K. Iyer, Z. Wei, L. Ayramova, G. O. Capek, R. G. Cooks, J. Am. Soc. Mass Spectrom. 2019, 30, 2144.
dc.identifier.citedreferenceS. Shaabani, R. Xu, M. Ahmadianmoghaddam, L. Gao, M. Stahorsky, J. Olechno, R. Ellson, M. Kossenjans, V. Helan, A. Dömling, Green Chem. 2019, 21, 225.
dc.identifier.citedreferenceY. Wang, S. Shaabani, M. Ahmadianmoghaddam, L. Gao, R. Xu, K. Kurpiewska, J. Kalinowska-Tluscik, J. Olechno, R. Ellson, M. Kossenjans, V. Helan, M. Groves, A. Dömling, ACS Cent. Sci. 2019, 5, 451.
dc.identifier.citedreferenceI. Sinclair, R. Stearns, S. Pringle, J. Wingfield, S. Datwani, E. Hall, L. Ghislain, L. Majlof, M. Bachman, J. Lab. Autom. 2016, 21, 19.
dc.identifier.citedreferenceI. Sinclair, M. Bachman, D. Addison, M. Rohman, D. C. Murray, G. Davies, E. Mouchet, M. E. Tonge, R. G. Stearns, L. Ghislain, S. S. Datwani, L. Majlof, E. Hall, G. R. Jones, E. Hoyes, J. Olechno, R. Ellson, P. E. Barran, S. D. Pringle, M. R. Morris, J. Wingfield, Anal. Chem. 2019, 91, 3790.
dc.identifier.citedreferenceK. J. DiRico, W. Hua, C. Liu, J. W. Tucker, A. S. Ratnayake, M. E. Flanagan, M. D. Troutman, M. C. Noe, ACS Med. Chem. Lett. 2020, 11, 1101.
dc.identifier.citedreferenceS. Sun, T. R. Slaney, R. T. Kennedy, Anal. Chem. 2012, 84, 5794.
dc.identifier.citedreferenceS. Sun, R. T. Kennedy, Anal. Chem. 2014, 86, 9309.
dc.identifier.citedreferenceX. W. Diefenbach, I. Farasat, E. D. Guetschow, C. J. Welch, R. T. Kennedy, S. Sun, ACS Omega 2018, 3, 1498.
dc.identifier.citedreferenceE. E. Kempa, C. A. Smith, X. Li, B. Bellina, K. Richardson, S. Pringle, J. L. Galman, N. J. Turner, P. E. Barran, Anal. Chem. 2020, 92, 12605.
dc.identifier.citedreferenceR. T. Kelly, J. S. Page, I. Marginean, K. Tang, R. D. Smith, Angew. Chem. Int. Ed. 2009, 48, 6832.
dc.identifier.citedreferenceD. J. Steyer, R. T. Kennedy, Anal. Chem. 2019, 91, 6645.
dc.identifier.citedreferenceT. Hatakeyama, D. L. Chen, R. F. Ismagilov, J. Am. Chem. Soc. 2006, 128, 2518.
dc.identifier.citedreferenceR. J. Beulig, R. Warias, J. J. Heiland, S. Ohla, K. Zeitler, D. A. Belder, Lab Chip 2017, 17, 1996.
dc.identifier.citedreferenceA. C. Sun, D. J. Steyer, A. R. Allen, E. M. Payne, R. T. Kennedy, C. R. J. Stephenson, Nat. Commun. 2020, 11, 6202.
dc.identifier.citedreferenceD. W. Robbins, J. F. A. Hartwig, Science 2011, 333, 1423.
dc.identifier.citedreferenceN. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075.
dc.identifier.citedreferenceR. C. McAtee, E. J. McClain, C. R. J. Stephenson, Trends Chem. 2019, 1, 111.
dc.identifier.citedreferenceJ. J. Douglas, M. J. Sevrin, C. R. J. Stephenson, Org. Process Res. Dev. 2016, 20, 11134.
dc.identifier.citedreferenceD. A. Nagib, D. W. C. MacMillan, Nature 2011, 480, 224.
dc.identifier.citedreferenceJ. W. Beatty, J. J. Douglas, K. P. Cole, C. R. J. Stephenson, Nat. Commun. 2015, 6, 7919.
dc.identifier.citedreferenceJ. W. Beatty, J. J. Douglas, R. Miller, R. C. McAtee, K. P. Cole, C. R. J. Stephenson, Chem 2016, 1, 456.
dc.identifier.citedreferenceR. C. McAtee, J. W. Beatty, C. C. McAtee, C. R. J. Stephenson, Org. Lett. 2018, 20, 3491.
dc.identifier.citedreferenceA. C. Sun, E. J. McClain, J. W. Beatty, C. R. J. Stephenson, Org. Lett. 2018, 20, 3487.
dc.identifier.citedreferenceM. Chabert, K. D. Dorfman, P. de Cremoux, J. Roeraade, J.-L. Viovy, Anal. Chem. 2006, 78, 7722.
dc.identifier.citedreferencePfizer commercial compound library link: https://www.sigmaaldrich.com/life-science/cell-biology/bioactive-small-molecules/pfizer.html.
dc.identifier.citedreferenceDevelopment of an MS-MS assay can help to reduce, and possibly remove, background noise by increasing assay specificity towards the product of interest.
dc.identifier.citedreferenceWe chose to use trifluoromethylated ethyltheophylline as the internal standard for our caffeine trifluoromethylation reaction, as it only varies in structure by a single methylene group from caffeine. This change is easily discernible by MS but should not significantly affect ionization.
dc.identifier.citedreferenceN. Thorne, M. Shen, W. A. Lea, A. Simeonov, S. Lovell, D. S. Auld, J. Inglese, Chem. Biol. 2012, 19, 1060.
dc.identifier.citedreferenceP. Ho, K. Yue, P. Pandey, L. Breault, F. Harbinski, A. J. McBride, B. Webb, J. Narahari, N. Karassina, K. V. Wood, A. Hill, D. S. Auld, ACS Chem. Biol. 2013, 8, 1009.
dc.identifier.citedreferenceJ. R. Schmink, A. Bellomo, S. Berritt, Aldrichimica Acta 2013, 46, 71.
dc.identifier.citedreferenceS. W. Krska, D. A. DiRocco, S. D. Dreher, M. Shevlin, Acc. Chem. Res. 2017, 50, 2976.
dc.identifier.citedreferenceS. Chow, S. Liver, A. Nelson, Nat. Chem. Rev. 2018, 2, 174.
dc.identifier.citedreferenceP. S. Gromski, A. B. Henson, J. M. Granda, L. Cronin, Nat. Chem. Rev. 2019, 3, 119.
dc.identifier.citedreferenceC. L. Allen, D. C. Leitch, M. S. Anson, M. A. Zajac, Nat. Catal. 2019, 2, 2.
dc.identifier.citedreferenceA. Milo, Science 2019, 363, 122.
dc.identifier.citedreferenceP. R. Fitzgerald, B. M. Paegel, Chem. Rev. 2021, 121, 7155.
dc.identifier.citedreferenceR. Grainger, T. D. Heightman, S. V. Ley, F. Lima, C. N. Johnson, Chem. Sci. 2019, 10, 2264.
dc.identifier.citedreferenceA. Bellomo, N. Celebi-Olcum, X. Bu, N. Rivera, R. T. Ruck, Angew. Chem. Int. Ed. 2012, 51, 6912.
dc.identifier.citedreferenceM. R. Friedfeld, M. Shevlin, J. M. Hoyt, S. W. Krska, M. T. Tudge, P. J. Chirik, Science 2013, 342, 1076.
dc.identifier.citedreferenceD. A. DiRocco, K. Dykstra, S. Krska, P. Vachal, D. V. Conway, M. T. Tudge, Angew. Chem. Int. Ed. 2014, 53, 4802.
dc.identifier.citedreferenceK. D. Collins, T. Gensch, F. Glorius, Nat. Chem. 2014, 6, 859.
dc.identifier.citedreferenceS. Monfette, J. M. Blacquiere, D. E. Fogg, Organometallics 2011, 30, 36.
dc.identifier.citedreferenceS. M. Mennen, C. Alhambra, L. Allen, M. Barberis, S. Berritt, T. A. Brandt, A. D. Campbell, J. Castañón, A. H. Cherney, M. Christensen, D. B. Damon, J. Eugenio de Diego, S. García-Cerrada, P. García-Losada, R. Haro, J. Janey, D. C. Leitch, L. Li, F. Liu, P. C. Lobben, D. W. C. MacMillan, J. Magano, E. McInturff, S. Monfette, R. J. Post, D. Schultz, B. J. Sitter, J. M. Stevens, I. I. Strambeanu, J. Twilton, K. Wang, M. A. Zajac, Org. Process Res. Dev. 2019, 23, 1213.
dc.identifier.citedreferenceA. B. Santanilla, Science 2015, 347, 443.
dc.identifier.citedreferenceN. J. Gesmundo, B. Sauvagnat, P. J. Curran, M. P. Richards, C. L. Andrews, P. J. Dandliker, T. Cernak, Nature 2018, 557, 228.
dc.identifier.citedreferenceD. Perera, J. W. Tucker, S. Brahmbhatt, C. J. Helal, A. Chong, W. Farrell, P. Richardson, N. W. Sach, Science 2018, 359, 429.
dc.identifier.citedreferenceJ. Welch, React. Chem. Eng. 2019, 4, 1895.
dc.identifier.citedreferenceT. W. Cooper, I. B. Campbell, S. J. Macdonald, Angew. Chem. Int. Ed. 2010, 49, 8082.
dc.identifier.citedreferenceS. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 345.
dc.identifier.citedreferenceA. Nadin, C. Hattotuwagama, I. Churcher, Angew. Chem. Int. Ed. 2012, 51, 1114.
dc.identifier.citedreferenceP. M. Murray, S. N. G. Tyler, J. D. Moseley, Org. Process Res. Dev. 2013, 17, 40.
dc.identifier.citedreferenceT. Rodrigues, P. Schneider, G. Schenider, Angew. Chem. Int. Ed. 2014, 53, 5750.
dc.identifier.citedreferenceY. J. Hwang, C. W. Coley, M. Abolhasani, A. L. Marzinzik, G. Koch, C. Spanka, H. Lehmann, K. F. Jensen, Chem. Commun. 2017, 53, 6649.
dc.identifier.citedreferenceA.-C. Bédard, A. Adamo, K. C. Aroh, M. G. Russell, A. A. Bedermann, J. Terosian, B. Yue, K. F. Jensen, T. F. Jamison, Science 2018, 361, 1220.
dc.identifier.citedreferenceT. Bretschneider, C. Ozbal, M. Holstein, M. Winter, F. H. Buettner, S. Thamm, D. Bischodd, A. H. Luippold, SLAS Technol. 2019, 24, 386.
dc.identifier.citedreferenceZ. Jaman, A. Mufti, S. Sah, L. Avramova, D. H. Thompson, Chem. Eur. J. 2018, 24, 9546.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.