Show simple item record

Observation of Square-Root Higher-Order Topological States in Photonic Waveguide Arrays

dc.contributor.authorKang, Juan
dc.contributor.authorLiu, Tao
dc.contributor.authorYan, Mou
dc.contributor.authorYang, Dandan
dc.contributor.authorHuang, Xiongjian
dc.contributor.authorWei, Ruishan
dc.contributor.authorQiu, Jianrong
dc.contributor.authorDong, Guoping
dc.contributor.authorYang, Zhongmin
dc.contributor.authorNori, Franco
dc.date.accessioned2023-07-14T13:58:34Z
dc.date.available2024-07-14 09:58:32en
dc.date.available2023-07-14T13:58:34Z
dc.date.issued2023-06
dc.identifier.citationKang, Juan; Liu, Tao; Yan, Mou; Yang, Dandan; Huang, Xiongjian; Wei, Ruishan; Qiu, Jianrong; Dong, Guoping; Yang, Zhongmin; Nori, Franco (2023). "Observation of Square-Root Higher-Order Topological States in Photonic Waveguide Arrays." Laser & Photonics Reviews 17(6): n/a-n/a.
dc.identifier.issn1863-8880
dc.identifier.issn1863-8899
dc.identifier.urihttps://hdl.handle.net/2027.42/177294
dc.description.abstractRecently, higher-order topological insulators (HOTIs), accompanied by topologically nontrivial boundary states with a codimension larger than one, have been extensively explored because of unconventional bulk-boundary correspondences. As a novel type of HOTIs, very recent works have explored the square-root HOTIs, where the topologically nontrivial nature of bulk bands stems from the square of the Hamiltonian. In this paper, 2D square-root HOTIs are experimentally demonstrated in photonic waveguide arrays written in glass using femtosecond laser direct-write techniques. Edge and corner states are clearly observed at visible light spectra. The dynamical evolutions of topological boundary states are experimentally demonstrated, which verify the existence of photonic corner states in two band gaps. The symmetry-protected corner states in the photonic square-root HOTI may have potential applications in information processing and lasing.2D photonic square-root HOTIs are realized in photonic waveguide arrays written in glass using femtosecond laser direct-write techniques. In addition to the spectral measurement, a fractional corner anomaly is analyzed for revealing the higher-order topology, and the confinement and robustness of the corner states are explored. These findings pave the way toward potential applications in photonic devices.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfemtosecond laser direct-write techniques
dc.subject.othersquare-root higher-order topological insulators
dc.subject.othersymmetry-protected corner states
dc.subject.otherphotonic waveguide arrays
dc.titleObservation of Square-Root Higher-Order Topological States in Photonic Waveguide Arrays
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177294/1/lpor202200499_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177294/2/lpor202200499-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177294/3/lpor202200499.pdf
dc.identifier.doi10.1002/lpor.202200499
dc.identifier.sourceLaser & Photonics Reviews
dc.identifier.citedreferenceJ. Noh, T. Schuster, T. Iadecola, S. Huang, M. Wang, K. P. Chen, C. Chamon, M. C. Rechtsman, Nat. Phys. 2020, 16, 989.
dc.identifier.citedreferenceY. Ota, F. Liu, R. Katsumi, K. Watanabe, K. Wakabayashi, Y. Arakawa, S. Iwamoto, Optica 2019, 6, 786.
dc.identifier.citedreferenceJ. Arkinstall, M. H. Teimourpour, L. Feng, R. El-Ganainy, H. Schomerus, Phys. Rev. B 2017, 95, 165109.
dc.identifier.citedreferenceM. Kremer, I. Petrides, E. Meyer, M. Heinrich, O. Zilberberg, A. Szameit, Nat. Commun. 2020, 11, 907.
dc.identifier.citedreferenceM. Ezawa, Phys. Rev. Res. 2020, 2, 033397.
dc.identifier.citedreferenceT. Mizoguchi, Y. Kuno, Y. Hatsugai, Phys. Rev. A 2020, 102, 033527.
dc.identifier.citedreferenceM. Yan, X. Huang, L. Luo, J. Lu, W. Deng, Z. Liu, Phys. Rev. B 2020, 102, 180102.
dc.identifier.citedreferenceL. Song, H. Yang, Y. Cao, P. Yan, Nano Lett. 2020, 20, 7566.
dc.identifier.citedreferenceM. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit, Nature 2013, 496, 196.
dc.identifier.citedreferenceY. Ke, X. Qin, F. Mei, H. Zhong, Y. S. Kivshar, C. Lee, Laser Photonics Rev. 2016, 10, 995.
dc.identifier.citedreferenceJ. Noh, S. Huang, K. P. Chen, M. C. Rechtsman, Phys. Rev. Lett. 2018, 120, 063902.
dc.identifier.citedreferenceY. Lumer, M. A. Bandres, M. Heinrich, L. J. Maczewsky, H. Herzig-Sheinfux, A. Szameit, M. Segev, Nat. Photonics 2019, 13, 339.
dc.identifier.citedreferenceY. Wang, X. L. Pang, Y. H. Lu, J. Gao, Y.-J. Chang, L. F. Qiao, Z. Q. Jiao, H. Tang, X. M. Jin, Optica 2019, 6, 2334.
dc.identifier.citedreferenceH. R. Kim, M. S. Hwang, D. Smirnova, K. Y. Jeong, Y. Kivshar, H. G. Park, Nat. Commun. 2020, 11, 5758.
dc.identifier.citedreferenceA. J. Menssen, J. Guan, D. Felce, M. J. Booth, I. A. Walmsley, Phys. Rev. Lett. 2020, 125, 117401.
dc.identifier.citedreferenceD. Tan, Z. Wang, B. Xu, J. Qiu, Adv. Photonics 2021, 3, 024002.
dc.identifier.citedreferenceW. Yan, D. Song, S. Xia, J. Xie, L. Tang, J. Xu, Z. Chen, ACS Photonics 2021, 8, 3308.
dc.identifier.citedreferenceC. W. Peterson, T. Li, W. A. Benalcazar, T. L. Hughes, G. Bahl, Science 2020, 368, 1114.
dc.identifier.citedreferenceC. W. Peterson, T. Li, W. Jiang, T. L. Hughes, G. Bahl, Nature 2021, 589, 376.
dc.identifier.citedreferenceY. Liu, S. Leung, F. F. Li, Z. K. Lin, X. Tao, Y. Poo, J. H. Jiang, Nature 2021, 589, 381.
dc.identifier.citedreferenceX. Ni, M. A. Gorlach, A. Alu, A. B. Khanikaev, New J. Phys. 2017, 19, 055002.
dc.identifier.citedreferenceG. G. Pyrialakos, N. Schmitt, N. S. Nye, M. Heinrich, N. V. Kantartzis, A. Szameit, D. N. Christodoulides, Nat. Commun. 2020, 11, 2074.
dc.identifier.citedreferenceL. J. Maczewsky, M. Heinrich, M. Kremer, S. K. Ivanov, M. Ehrhardt, F. Martinez, Y. V. Kartashov, V. V. Konotop, L. Torner, D. Bauer, A. Szameit, Science 2020, 370, 701.
dc.identifier.citedreferenceS. Xia, D. Jukić, N. Wang, D. Smirnova, L. Smirnov, L. Tang, D. Song, A. Szameit, D. Leykam, J. Xu, Z. Chen, H. Buljan, Light: Sci. Appl. 2020, 9, 147.
dc.identifier.citedreferenceS. Mukherjee, M. C. Rechtsman, Science 2020, 368, 856.
dc.identifier.citedreferenceS. Mukherjee, M. C. Rechtsman, Phys. Rev. X 2021, 11, 041057.
dc.identifier.citedreferenceS. S. Kruk, W. Gao, D. Choi, T. Zentgraf, S. Zhang, Y. Kivshar, Nano Lett. 2021, 21, 4592.
dc.identifier.citedreferenceM. S. Kirsch, Y. Zhang, M. Kremer, L. J. Maczewsky, S. K. Ivanov, Y. V. Kartashov, L. Torner, D. Bauer, A. Szameit, M. Heinrich, Nat. Phys. 2021, 17, 995.
dc.identifier.citedreferenceZ. Hu, D. Bongiovanni, D. Jukic, E. Jajtic, S. Xia, D. Song, J. Xu, R. Morandotti, H. Buljan, Z. Chen, Light: Sci. Appl. 2021, 10, 164.
dc.identifier.citedreferenceM. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, M. Khajavikhan, Science 2018, 359, 4005.
dc.identifier.citedreferenceW. Zhang, X. Xie, H. Hao, J. Dang, S. Xiao, S. Shi, H. Ni, Z. Niu, C. Wang, K. Jin, X. Zhang, X. Xu, Light: Sci. Appl. 2020, 9, 109.
dc.identifier.citedreferenceM. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 2010, 82, 3045.
dc.identifier.citedreferenceX. L. Qi, S. C. Zhang, Rev. Mod. Phys. 2011, 83, 1057.
dc.identifier.citedreferenceT. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto, Rev. Mod. Phys. 2019, 91, 015006.
dc.identifier.citedreferenceW. A. Benalcazar, B. A. Bernevig, T. L. Hughes, Science 2017, 357, 61.
dc.identifier.citedreferenceF. Schindler, A. M. Cook, M. G. Vergniory, Z. Wang, S. P. Parkin, B. A. Bernevig, T. Neupert, Sci. Adv. 2018, 4, 0346.
dc.identifier.citedreferenceZ. Song, Z. Fang, C. Fang, Phys. Rev. Lett. 2017, 119, 246402.
dc.identifier.citedreferenceF. K. Kunst, G. Van Miert, E. J. Bergholtz, Phys. Rev. B 2018, 97, 241405.
dc.identifier.citedreferenceT. Liu, J. J. He, F. Nori, Phys. Rev. B 2018, 98, 245413.
dc.identifier.citedreferenceM. Ezawa, Phys. Rev. Lett. 2018, 120, 026801.
dc.identifier.citedreferenceT. Liu, Y. R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda, F. Nori, Phys. Rev. Lett. 2019, 122, 076801.
dc.identifier.citedreferenceS. A. A. Ghorashi, T. Li, T. L. Hughes, Phys. Rev. Lett. 2020, 125, 266804.
dc.identifier.citedreferenceS. Mittal, V. V. Orre, G. Zhu, M. A. Gorlach, A. Poddubny, M. Hafezi, Nat. Photonics 2019, 13, 692.
dc.identifier.citedreferenceM. Li, D. Zhirihin, M. Gorlach, X. Ni, D. Filonov, A. Slobozhanyuk, A. Alù, A. B. Khanikaev, Nat. Photonics 2019, 14, 89.
dc.identifier.citedreferenceA. El Hassan, F. K. Kunst, A. Moritz, G. Andler, E. J. Bergholtz, M. Bourennane, Nat. Photonics 2019, 13, 697.
dc.identifier.citedreferenceJ. Noh, W. A. Benalcazar, S. Huang, M. J. Collins, K. P. Chen, T. L. Hughes, M. C. Rechtsman, Nat. Photonics 2018, 12, 408.
dc.identifier.citedreferenceB. Y. Xie, G. X. Su, H. F. Wang, H. Su, X. P. Shen, P. Zhan, M. H. Lu, Z. L. Wang, Y. F. Chen, Phys. Rev. Lett. 2019, 122, 233903.
dc.identifier.citedreferenceX. D. Chen, W. M. Deng, F. L. Shi, F. L. Zhao, M. Chen, J. W. Dong, Phys. Rev. Lett. 2019, 122, 233902.
dc.identifier.citedreferenceB. Y. Xie, H. F. Wang, H. X. Wang, X. Y. Zhu, J. H. Jiang, M. H. Lu, Y. F. Chen, Phys. Rev. B 2018, 98, 582.
dc.identifier.citedreferenceA. Cerjan, M. Jurgensen, W. A. Benalcazar, S. Mukherjee, M. C. Rechtsman, Phys. Rev. Lett. 2020, 125, 213901.
dc.identifier.citedreferenceD. Leykam, D. A. Smirnova, Nat. Phys. 2021, 17, 632.
dc.identifier.citedreferenceH. Xue, Y. Yang, F. Gao, Y. Chong, B. Zhang, Nat. Mater. 2019, 18, 108.
dc.identifier.citedreferenceX. Ni, M. Weiner, A. Alù, A. B. Khanikaev, Nat. Mater. 2019, 18, 113.
dc.identifier.citedreferenceX. Zhang, H. X. Wang, Z. K. Lin, Y. Tian, B. Xie, M. H. Lu, Y. F. Chen, J. H. Jiang, Nat. Phys. 2019, 15, 582.
dc.identifier.citedreferenceM. Serra-Garcia, V. Peri, R. Susstrunk, O. R. Bilal, T. Larsen, L. G. Villanueva, S. D. Huber, Nature 2018, 555, 342.
dc.identifier.citedreferenceH. Fan, B. Xia, L. Tong, S. Meng, D. Yu, Phys. Rev. Lett. 2019, 122, 204301.
dc.identifier.citedreferenceG. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, M. Segev, Science 2018, 359, 4003.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.