Show simple item record

Surprising Decrease in the Martian He Bulge During PEDE-2018 and Changes in Upper Atmospheric Circulation

dc.contributor.authorElrod, Meredith K.
dc.contributor.authorBougher, Stephen
dc.contributor.authorRoeten, Kali
dc.contributor.authorArnold, Kenneth
dc.date.accessioned2023-08-01T18:29:01Z
dc.date.available2024-09-01 14:29:00en
dc.date.available2023-08-01T18:29:01Z
dc.date.issued2023-08
dc.identifier.citationElrod, Meredith K.; Bougher, Stephen; Roeten, Kali; Arnold, Kenneth (2023). "Surprising Decrease in the Martian He Bulge During PEDE-2018 and Changes in Upper Atmospheric Circulation." Journal of Geophysical Research: Planets 128(8): n/a-n/a.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/177413
dc.description.abstractUsing the Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Mars Atmosphere Volatile and Evolution spacecraft (MAVEN), we analyzed data from Mars Year (MY) 32, 34, and 35 to examine the He bulge during the northern winter solstice (Ls ∼ 180–240), specifically focusing on the effects from the planet encircling dust event (PEDE-2018). He collects on the dawn/nightside winter polar hemisphere of Mars. The seasonal migration of the He bulge has been observed and modeled (M. Elrod et al., 2017, https://doi.org/10.1002/2016JA023482; Gupta et al., 2021, https://doi.org/10.1029/2021JE006976). The MAVEN orbit precesses around Mars allowing for a variety of latitude and local time observations throughout the Martian year. MY 32, 34, and 35 had the best possible opportunities to observe the He bulge during northern winter (Ls ∼ 180–240). NGIMS observations during MY 32 and MY 35 revealed a He bulge from the nightside to dawn in alignment with modeling and previous publications. However, in MY 34, during the PEDE, the He bulge was not present, indicating that the PEDE directly impacted upper atmospheric circulation. Updates in modeling indicate changes in circulation and winds can cause He to shift further north than MAVEN was able to observe. While adding a simple static version of gravity waves to the Mars Global Ionosphere Thermosphere Model model may account for some of the variations in the global circulation during the dust event, other studies (e.g., Yiğit, 2023, https://doi.org/10.1038/s41561-022-01118-7) have posited that the gravity waves during the dust storm were more variable than the initial parameters we have included.Plain Language SummaryMars is regularly subjected to large dust storms that typically start during the northern winter season. Approximately every 7–10 years these large storms can merge and grow and become planet-sized dust storms that cover 80%–95% of the surface. These rare and massive planet sized storms last for about a month before slowly dissipating, changing not only the surface of the planet but also the structure and composition of the atmosphere. Mars has regular helium bulges that collect in the cold part of the upper atmosphere (e.g., polar winter regions on the night, dawn side). Global circulation models of the atmosphere have shown this helium bulge as predictable throughout the Martian year. The Mars Atmospheres and Volatiles EvolutioN spacecraft made observations of Helium over the course of 4 Martian years, but during the last major global dust storm, where a Helium bulge in the upper atmosphere should have been observed, no increase in Helium associated with a bulge was observed. This could have implications for the broader impact of regular global dust storms, winds, and upper atmosphere circulation on the Martian atmosphere.Key PointsHe collects in the upper atmosphere above the dawn winter polar atmosphere regionHe bulge density is unexpectedly lower in Mars Year (MY) 34 northern winter during the (planet encircling dust event) than other observed northern winters during MY 32 and 35He is a tracer for upper atmosphere circulation and changes in the bulge indicate the circulation changed as shown through modeling
dc.publisherWiley Periodicals, Inc.
dc.titleSurprising Decrease in the Martian He Bulge During PEDE-2018 and Changes in Upper Atmospheric Circulation
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177413/1/jgre22257.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177413/2/jgre22257_am.pdf
dc.identifier.doi10.1029/2022JE007727
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceRoeten, K. J., Bougher, S. W., Benna, M., Mahaffy, P. R., Lee, Y., Pawlowski, D., et al. ( 2019 ). MAVEN/NGIMS thermospheric neutral wind observations: Interpretation using M-GITM general circulation model. Journal of Geophysical Research, 124 ( 12 ), 3283 – 3303. https://doi.org/10.1029/2019JE005957
dc.identifier.citedreferenceLeelavathi, V. V., Leelavathi, V., Venkateswara, R. N., & Rao, S. ( 2020 ). Interannual variability of atmospheric gravity waves in the Martian thermosphere: Effects of the 2018 planet-encircling dust event. Journal of Geophysical Research: Planets, 125, e2020JE006649. https://doi.org/10.1029/2020JE006649
dc.identifier.citedreferenceMahaffy, P., Benna, M., Elrod, M., Yelle, R. V., Bougher, S., Stone, S., & Jakosky, B. ( 2015 ). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophysical Research Letters, 42 ( 21 ), 8915 – 8957. https://doi.org/10.1002/2015GL065329
dc.identifier.citedreferenceMayr, H., Harris, I., Hartle, R., & Hoegy, W. ( 1978 ). Diffusion model for the upper atmosphere of Venus. Journal of Geophysical Research, 83 ( A9 ), 4411 – 4416. https://doi.org/10.1029/JA083iA09p04411
dc.identifier.citedreferenceMayr, H., Harris, I., Neimann, H., Brinton, H., Spencer, N., Taylor, H., et al. ( 1980 ). Dynamic properties of the thermosphere inferred from Pioneer Venus mass spectrometer measurements. Journal of Geophysical Research, 85 ( A13 ), 7814 – 7847. https://doi.org/10.1029/JA085iA13p07841
dc.identifier.citedreferenceMedvedev, A., & Yiğit, E. ( 2012 ). Thermal effects of internal gravity waves in the Martian upper atmosphere. Geophysical Research Letters, 39 ( 5 ), L05201. https://doi.org/10.1029/2012GL050852
dc.identifier.citedreferenceMiyamoto, A., Nakagawa, H., Kuroda, T., Takami, K., Murata, I., Medvedev, A. S., et al. ( 2021 ). Intense zonal wind in the Martian mesosphere during the 2018 planet-encircling dust event observed by ground-based infrared heterodyne spectroscopy. Geophysical Research Letters, 48 ( 11 ), e2021GL092413. https://doi.org/10.1029/2021GL092413
dc.identifier.citedreferenceRao, N. V., Gupta, N., & Kadhane, U. R. ( 2020 ). Enhanced densities in the Martian thermosphere associated with the 2018 planet-encircling dust event: Results from MENCA/MOM and NGIMS/MAVEN. Journal of Geophysical Research: Planets, 125, e2020JE006430. https://doi.org/10.1029/2020JE006430
dc.identifier.citedreferenceRidley, A., Deng, Y., & Tóth, G. ( 2006 ). The global ionosphere-thermosphere model. Journal of Atmospheric and Solar-Terrestrial Physics, 68 ( 8 ), 839 – 864. https://doi.org/10.1016/j.jastp.2006.01.008
dc.identifier.citedreferenceRoeten, K., & Bougher, S. ( 2022 ). M-GITM datasets used for a modeling study of the mean impacts of subgrid-scale gravity waves on thermospheric velocities and temperatures at Mars [Dataset]. Retrieved from University of Michigan—Deep Blue Data. https://doi.org/10.7032/7hab-2340
dc.identifier.citedreferenceRoeten, K. J., Bougher, S. W., Benna, M., & Elrod, M. K. ( 2022 ). MAVEN/NGIMS wind observation in the Martian thermosphere during the 2018 planet encircling dust event. Icarus, 382, 115006. https://doi.org/10.1016/j.icarus.2022.115006
dc.identifier.citedreferenceRoeten, K. J., Bougher, S. W., Yiğit, E., Medvedev, A. S., Benna, M., & Elrod, M. K. ( 2022 ). Impacts of gravity waves in the Martian thermosphere: The Mars Global Ionosphere-Thermosphere Model coupled with a whole atmosphere gravity wave scheme. Journal of Geophysical Research: Planets, 127 ( 12 ), e2022JE007477. https://doi.org/10.1029/2022JE007477
dc.identifier.citedreferenceStone, S. W., Yelle, R. V., Benna, M., Lo, D. Y., Elrod, M. K., & Mahaffy, P. R. ( 2020 ). Hydrogen escape from Mars is driven by seasonal and dust storm transport of water. Science, 370, 6518 – 6831. https://doi.org/10.1126/science.aba5229
dc.identifier.citedreferenceStone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., & Mahaffy, P. R. ( 2022 ). Neutral composition and horizontal variations of the Martian upper atmosphere from MAVEN NGIMS. Journal of Geophysical Research: Planets, 127 ( 6 ), e2021JE0070785. https://doi.org/10.1029/2021JE007085
dc.identifier.citedreferenceTheimann, E., Chamberlin, P., Eparvier, F., Woods, T., Bougher, S., Jakosky, B., & Templeman, B. ( 2017 ). The MAVEN EUVM spectral irradiance model for solar variability at Mars: Algorithms and results. Journal of Geophysical Research: Space Physics, 122 ( 3 ), 2748 – 2767. https://doi.org/10.1002/2016JA023512
dc.identifier.citedreferenceWolkenberg, P., Giuranna, M., Smith, M., Grassi, D., & Amoroso, M. ( 2020 ). Similarities and differences of global dust storms in MY 25, 28, and 34. Journal of Geophysical Research: Planets, 125 ( 3 ), e2019JE006104. https://doi.org/10.1029/2019JE006104
dc.identifier.citedreferenceYiğit, E. ( 2023 ). Coupling and interactions across the Martian whole atmosphere system. Nature Geoscience, 16 ( 2 ), 123 – 132. https://doi.org/10.1038/s41561-022-01118-7
dc.identifier.citedreferenceYiğit, E., Medvedev, A., Benna, M., & Jakosky, B. ( 2021 ). Dust storm-enhanced gravity wave activity in the Martian thermosphere observed by MAVEN and implications for atmospheric escape. Geophysical Research Letters, 48 ( 5 ), e2020GL092095. https://doi.org/10.1029/2020GL092095
dc.identifier.citedreferenceBardwaj, A., Thampi, S., Das, T., Dhanya, M., Naik, N., Vajja, D., et al. ( 2016 ). On the evening time exosphere of Mars: Result from MENCA aboard Mars Orbiter Mission. Geophysical Research Letters, 43, 1962 – 1867. https://doi.org/10.1002/2016GL067707
dc.identifier.citedreferenceBougher, S., Bell, J., Bell, J., Nelli, S., McDunn, T., Murphy, J., et al. ( 2015 ). Mars Global Ionosphere-Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere. Journal of Geophysical Research: Planets, 120 ( 2 ), 311 – 342. https://doi.org/10.1002/2014JE004715
dc.identifier.citedreferenceElrod, M., Benna, M., & Navas, T. ( 2014 ). MAVEN neutral Gas and ion mass spectrometer [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1518931
dc.identifier.citedreferenceElrod, M., Bougher, S., Bell, J., Mahaffy, P., Benna, M., Stone, S., et al. ( 2017 ). He bulge revealed: He and CO 2 diurnal and seasonal variations in the upper atmosphere of Mars as detected by MAVEN NGIMS. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 2564 – 2573. https://doi.org/10.1002/2016JA023482
dc.identifier.citedreferenceElrod, M. K., Bougher, S. W., Roeten, K., Sharrar, R., & Murphy, J. ( 2020 ). Structural and compositional changes in the upper atmosphere related to the PEDE-2018 dust event on Mars as observed by MAVEN NGIMS. Geophysical Research Letters, 47 ( 4 ), e2019GL084378. https://doi.org/10.1029/2019GL084378
dc.identifier.citedreferenceEngland, S., Liu, G., Yiğit, E., Mahaffy, P., Elrod, M., Benna, M., et al. ( 2017 ). MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 2310 – 2335. https://doi.org/10.1002/2016JA023475
dc.identifier.citedreferenceEparvier, F. G. ( 2022 ). MAVEN EUV modeled data Bundle [Dataset]. NASA Planetary Data System. https://doi.org/10.17189/1517691
dc.identifier.citedreferenceFarahat, A., Mayyasi, M., Withers, P., Dayeh, M., & Abuelgasim, A. ( 2021 ). Effects of the June 2018 global dust storm on the atmospheric composition of the Martian upper atmosphere as observed by MAVEN. Journal of Geophysical Research: Planets, 126 ( 10 ), e2021JE006868. https://doi.org/10.1029/2021JE006868
dc.identifier.citedreferenceFelici, M., Withers, P., Smith, M. D., González-Galindo, F., Oudrhiri, K., & Kahan, D. ( 2020 ). MAVEN ROSE observations of the response of the Martian ionosphere to dust storms. Journal of Geophysical Research: Space Physics, 125 ( 6 ), e2019JA027083. https://doi.org/10.1029/2019ja027083
dc.identifier.citedreferenceForbes, J., Zhang, X., Forget, F., Millour, E., & Kleinböhl, A. ( 2020 ). Solar tides in the middle and upper atmosphere of Mars. Journal of Geophysical Research: Space Physics, 125 ( 9 ), e2020JA028140. https://doi.org/10.1029/2020ja028140
dc.identifier.citedreferenceGonzález-Galindo, F., Chaufray, J.-Y., López-Valverde, M. A., Gilli, G., Forget, F., Leblanc, F., et al. ( 2013 ). Three-dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km. Journal of Geophysical Research: Planets, 118 ( 10 ), 2105 – 2123. https://doi.org/10.1002/jgre.20150
dc.identifier.citedreferenceGupta, N., Rao, N., Bougher, S., & Elrod, M. ( 2021 ). Latitudinal and seasonal asymmetries of the helium bulge in the Martian upper atmosphere. Journal of Geophysical Research: Planets, 126 ( 10 ), e2021JE006976. https://doi.org/10.1029/2021JE006976
dc.identifier.citedreferenceHaberle, R. M., Murphy, J. R., & Schaeffer, J. ( 2013 ). Orbital change experiments with a Mars general circulation model. Icarus, 161 ( 1 ), 66 – 89. https://doi.org/10.1016/S0019-1035(02)00017-9
dc.identifier.citedreferenceJain, S., Bougher, S., Deighan, J., Schneider, N., González-Galindo, F., Stewart, A., et al. ( 2020 ). Martian thermospheric warming associated with the planet encircling dust event of 2018. Geophysical Reserve Letters, 47 ( 3 ), e2019GL085302. https://doi.org/10.1029/2019GL085302
dc.identifier.citedreferenceKass, D., Schofield, J., Kleinböhl, A., McCleese, D., Heavens, N., Shirley, J., & Steele, L. ( 2020 ). Mars Climate Sounder observation of Mars’ 2018 global dust storm. Geophysical Reserve Letters, 47 ( 23 ), e2019GL083931. https://doi.org/10.1029/2019GL083931
dc.identifier.citedreferenceKuroda, T., Medvedev, A., & Yiğit, E. ( 2020 ). Gravity wave activity in the atmosphere of Mars during the 2018 global dust storm: Simulations with a high-resolution model. Journal of Geophysical Research: Planets, 125 ( 11 ), e2020JE006556. https://doi.org/10.1029/2020JE006556
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.