Show simple item record

Renally Clearable Ultraminiature Chain-Like Gold Nanoparticle Clusters for Multimodal Molecular Imaging of Choroidal Neovascularization

dc.contributor.authorNguyen, Van Phuc
dc.contributor.authorQian, Wei
dc.contributor.authorZhe, Josh
dc.contributor.authorHenry, Jessica
dc.contributor.authorWang, Mingyang
dc.contributor.authorLiu, Bing
dc.contributor.authorZhang, Wei
dc.contributor.authorWang, Xueding
dc.contributor.authorPaulus, Yannis M.
dc.date.accessioned2023-09-06T00:45:13Z
dc.date.available2024-09-05 20:45:10en
dc.date.available2023-09-06T00:45:13Z
dc.date.issued2023-08
dc.identifier.citationNguyen, Van Phuc; Qian, Wei; Zhe, Josh; Henry, Jessica; Wang, Mingyang; Liu, Bing; Zhang, Wei; Wang, Xueding; Paulus, Yannis M. (2023). "Renally Clearable Ultraminiature Chain-Like Gold Nanoparticle Clusters for Multimodal Molecular Imaging of Choroidal Neovascularization." Advanced Materials 35(31): n/a-n/a.
dc.identifier.issn0935-9648
dc.identifier.issn1521-4095
dc.identifier.urihttps://hdl.handle.net/2027.42/177585
dc.description.abstractCurrently, available gold nanoparticles (GNPs) typically accumulate in the liver and spleen, leading to concerns for their long-term biosafety. To address this long-standing problem, ultraminiature chain-like gold nanoparticle clusters (GNCs) are developed. Via self-assembly of 7–8 nm GNP monomers, GNCs provide redshifted optical absorption and scattering contrast in the near-infrared window. After disassembly, GNCs turn back to GNPs with a size smaller than the renal glomerular filtration size cutoff, allowing their excretion via urine. A one-month longitudinal study in a rabbit eye model demonstrates that GNCs facilitate multimodal molecular imaging of choroidal neovascularization (CNV) in vivo, non-invasively, with excellent sensitivity and spatial resolution. GNCs targeting αvβ3 integrins enhance photoacoustic and optical coherence tomography (OCT) signals from CNV by 25.3-fold and 150%, respectively. With excellent biosafety and biocompatibility demonstrated, GNCs render a first-of-its-kind nanoplatform for biomedical imaging.A first-of-its-kind multifunctional ultraminiature chain-like gold nanoparticle clusters (GNCs) are developed via self-assembly of 7–8 nm spherical GNP monomers, the GNCs provides redshifted optical absorption and scattering contrasts in the near-infrared (NIR) window which is highly desired by optical imaging modalities such as photoacoustic (PA) imaging and optical coherence tomography (OCT). After disassembly, the GNCs turn back into ultraminiature GNPs with a size smaller than the renal glomerular filtration size cutoff, allowing them to be excreted via urine instead of being trapped in the liver and spleen. Renally clearable ultraminiature GNCs facilitate long-term multimodal molecular imaging of choroidal neovascularization in vivo.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherphotoacoustic microscopy
dc.subject.otherage-related macular degeneration
dc.subject.othercontrast agents
dc.subject.othermultimodality molecular ocular imaging
dc.subject.otheroptical coherence tomography
dc.subject.otherrenally clearable ultraminiature chain-like gold nanoparticles
dc.subject.otherretinal diseases
dc.titleRenally Clearable Ultraminiature Chain-Like Gold Nanoparticle Clusters for Multimodal Molecular Imaging of Choroidal Neovascularization
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177585/1/adma202302069-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177585/2/adma202302069.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/177585/3/adma202302069_am.pdf
dc.identifier.doi10.1002/adma.202302069
dc.identifier.sourceAdvanced Materials
dc.identifier.citedreferenceM. Ahamed, M. Karns, M. Goodson, J. Rowe, S. M. Hussain, J. J. Schlager, Y. Hong, Toxicol. Appl. Pharmacol. 2008, 233, 404.
dc.identifier.citedreferenceB. Pelaz, P. del Pino, P. Maffre, R. Hartmann, M. Gallego, S. Rivera-Fernandez, J. M. de la Fuente, G. U. Nienhaus, W. J. Parak, ACS Nano 2015, 9, 6996.
dc.identifier.citedreferenceJ. Liu, M. Yu, X. Ning, C. Zhou, S. Yang, J. Zheng, Angew. Chem., Int. Ed. 2013, 52, 12572.
dc.identifier.citedreferenceH. Chen, H. Paholak, M. Ito, K. Sansanaphongpricha, W. Qian, Y. Che, D. Sun, Nanotechnology 2013, 24, 355101.
dc.identifier.citedreferenceV.-P. Nguyen, Y. Li, J. Henry, W. Zhang, X. Wang, Y. M. Paulus, ACS Appl. Mater. Interfaces 2021, 13, 40214.
dc.identifier.citedreferenceV.-P. Nguyen, Y. Li, J. Henry, W. Zhang, M. Aaberg, S. Jones, T. Qian, X. Wang, Y. M. Paulus, ACS Sens. 2020, 5, 3070.
dc.identifier.citedreferenceV. P. Nguyen, J. Folz, Y. Li, J. Henry, W. Zhang, T. Qian, X. Wang, Y. M. Paulus, J. Biophotonics 2021, 14, 202000458.
dc.identifier.citedreferenceA. Ruggiero, C. H. Villa, E. Bander, D. A. Rey, M. Bergkvist, C. A. Batt, K. Manova-Todorova, W. M. Deen, D. A. Scheinberg, M. R. McDevitt, Proc. Natl. Acad. Sci. USA 2010, 107, 12369.
dc.identifier.citedreferenceJ. Liu, M. Yu, C. Zhou, J. Zheng, Mater. Today 2013, 16, 477.
dc.identifier.citedreferenceB. Du, X. Jiang, A. Das, Q. Zhou, M. Yu, R. Jin, J. Zheng, Nat. Nanotechnol. 2017, 12, 1096.
dc.identifier.citedreferenceN. Khlebtsov, L. Dykman, Chem. Soc. Rev. 2011, 40, 1647.
dc.identifier.citedreferenceW. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. Sips, R. E. Geertsma, Biomaterials 2008, 29, 1912.
dc.identifier.citedreferenceM. Longmire, P. L. Choyke, H. Kobayashi, Nanomedicine 2008, 3, 5.
dc.identifier.citedreferenceY.-S. Chen, Y.-C. Hung, I. Liau, G. S. Huang, Nanoscale Res. Lett. 2009, 4, 858.
dc.identifier.citedreferenceC. Lasagna-Reeves, D. Gonzalez-Romero, M. Barria, I. Olmedo, A. Clos, V. S. Ramanujam, A. Urayama, L. Vergara, M. J. Kogan, C. Soto, Biochem. Biophys. Res. Commun. 2010, 393, 649.
dc.identifier.citedreferenceL. Y. Chou, K. Zagorovsky, W. C. Chan, Nat. Nanotechnol. 2014, 9, 148.
dc.identifier.citedreferenceB. D. Chithrani, A. A. Ghazani, W. C. Chan, Nano Lett. 2006, 6, 662.
dc.identifier.citedreferenceD. Jo, J. Kim, T. Lee, J. Kim, Nanomed.: Nanotechnol. Biol., Med 2015, 11, 1603.
dc.identifier.citedreferenceF. Wang, L. Yu, M. P. Monopoli, P. Sandin, E. Mahon, A. Salvati, K. A. Dawson, Nanomed.: Nanotechnol. Biol., Med 2013, 9, 1159.
dc.identifier.citedreferenceV. Sharma, R. K. Shukla, N. Saxena, D. Parmar, M. Das, A. Dhawan, Toxicol. Lett. 2009, 185, 211.
dc.identifier.citedreferenceM. Devanabanda, S. A. Latheef, R. Madduri, J. Immunotoxicol. 2016, 13, 897.
dc.identifier.citedreferenceG. Hannon, J. Lysaght, N. J. Liptrott, A. Prina-Mello, Adv. Sci. 2019, 6, 1900133.
dc.identifier.citedreferenceB. T. Soetikno, X. Shu, Q. Liu, W. Liu, S. Chen, L. Beckmann, A. A. Fawzi, H. F. Zhang, Biomed. Opt. Express 2017, 8, 3571.
dc.identifier.citedreferenceM. Xu, L. V. Wang, Rev. Sci. Instrum. 2006, 77, 041101.
dc.identifier.citedreferenceS. P. Mattison, W. Kim, J. Park, B. E. Applegate, Curr. Mol. Imaging (Discont.) 2014, 3, 88.
dc.identifier.citedreferenceC. Tian, W. Zhang, A. Mordovanakis, X. Wang, Y. M. Paulus, Opt. Express 2017, 25, 15947.
dc.identifier.citedreferenceV. P. Nguyen, Y. Li, W. Zhang, X. Wang, Y. M. Paulus, Sci. Rep. 2019, 9, 10560.
dc.identifier.citedreferenceV. P. Nguyen, Y. Li, W. Qian, B. Liu, C. Tian, W. Zhang, Z. Huang, A. Ponduri, M. Tarnowski, X. Wang, Sci. Rep. 2019, 9, 1.
dc.identifier.citedreferenceC. Tian, W. Zhang, V. P. Nguyen, X. Wang, Y. M. Paulus, J. Visualized Exp. 2018, 132, 57135.
dc.identifier.citedreferenceT. Ma, X. Zhang, C. T. Chiu, R. Chen, K. K. Shung, Q. Zhou, S. Jiao, J. Biomed. Opt. 2014, 19, 016015.
dc.identifier.citedreferenceV. P. Nguyen, Y. Li, W. Zhang, X. Wang, Y. M. Paulus, Biomed. Opt. Express 2018, 9, 5915.
dc.identifier.citedreferenceY. Li, W. Zhang, V. P. Nguyen, R. Rosen, X. Wang, X. Xia, Y. M. Paulus, Exp. Eye Res. 2019, 186, 107714.
dc.identifier.citedreferenceA. P. Jathoul, J. Laufer, O. Ogunlade, B. Treeby, B. Cox, E. Zhang, P. Johnson, A. R. Pizzey, B. Philip, T. Marafioti, M. F. Lythgoe, R. B. Pedley, M. A. Pule, P. Beard, Nat. Photonics 2015, 9, 239.
dc.identifier.citedreferenceJ. Shi, T. T. W. Wong, Y. He, L. Li, R. Zhang, C. S. Yung, J. Hwang, K. Maslov, L. V. Wang, Nat. Photonics 2019, 13, 609.
dc.identifier.citedreferenceL. V. Wang, Nat. Photonics 2009, 3, 503.
dc.identifier.citedreferenceW. Zhang, Y. Li, V. P. Nguyen, Z. Huang, Z. Liu, X. Wang, Y. M. Paulus, Light: Sci. Appl. 2018, 7, 103.
dc.identifier.citedreferenceV. P. Nguyen, W. Qian, Y. Li, B. Liu, M. Aaberg, J. Henry, W. Zhang, X. Wang, Y. M. Paulus, Nat. Commun. 2021, 12, 34.
dc.identifier.citedreferenceV. P. Nguyen, W. Fan, T. Zhu, W. Qian, Y. Li, B. Liu, W. Zhang, J. Henry, S. Yuan, X. Wang, ACS Nano 2021, 15, 13289.
dc.identifier.citedreferenceD. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, Optical Coher. Tomogr. Scien. 1991, 254, 1178.
dc.identifier.citedreferenceF. Sauvage, V. P. Nguyen, Y. Li, A. Harizaj, J. Sebag, D. Roels, V. Van Havere, K. Peynshaert, R. Xiong, J. C. Fraire, Nat. Nanotechnol. 2022, 17, 552.
dc.identifier.citedreferenceH. Wan, J. Yue, S. Zhu, T. Uno, X. Zhang, Q. Yang, K. Yu, G. Hong, J. Wang, L. Li, Nat. Commun. 2018, 9, 1171.
dc.identifier.citedreferenceP. Liu, T. Shi, H. Li, H. Chen, Y. Huang, H. Ma, T. Zhu, R. Zhao, Y. Li, Q. Xin, Nano Today 2022, 47, 101628.
dc.identifier.citedreferenceJ. Weber, P. C. Beard, S. E. Bohndiek, Nat. Methods 2016, 13, 639.
dc.identifier.citedreferenceY.-S. Chen, Y. Zhao, S. J. Yoon, S. S. Gambhir, S. Emelianov, Nat. Nanotechnol. 2019, 14, 465.
dc.identifier.citedreferenceA. De La Zerda, C. Zavaleta, S. Keren, S. Vaithilingam, S. Bodapati, Z. Liu, J. Levi, B. R. Smith, T.-J. Ma, O. Oralkan, Z. Cheng, X. Chen, H. Dai, B. T. Khuri-Yakub, S. S. Gambhir, Nat. Nanotechnol. 2008, 3, 557.
dc.identifier.citedreferenceZ. Li, S. Wang, J. Zhao, Y. Luo, H. Liang, S. Zhao, L. Zhang, Adv. Therapeutics 2023, 6, 2200350.
dc.identifier.citedreferenceA. McLean, M. Kanetidis, T. Gogineni, R. Ukani, R. McLean, A. Cooke, I. Avinor, B. Liu, P. Argyrakis, W. Qian, Chem. Mater. 2021, 33, 2913.
dc.identifier.citedreferenceM. Mitchell, M. Billingsley, R. Haley, E. Marissa, A. Nicholas, L. Robert, Nat. Rev. Drug Discovery 2021, 20, 101.
dc.identifier.citedreferenceH. S. Choi, W. Liu, P. Misra, E. Tanaka, J. P. Zimmer, B. Itty Ipe, M. G. Bawendi, J. V. Frangioni, Nat. Biotechnol. 2007, 25, 1165.
dc.identifier.citedreferenceC. Zhou, M. Long, Y. Qin, X. Sun, J. Zheng, Angew. Chem., Int. Ed. 2011, 50, 3168.
dc.identifier.citedreferenceW. Qian, M. Murakami, Y. Ichikawa, Y. Che, J. Phys. Chem. C 2011, 115, 23293.
dc.identifier.citedreferenceV. P. Nguyen, W. Qian, Y. Li, B. Liu, M. Aaberg, J. Henry, W. Zhang, X. Wang, Y. M. Paulus, Nat. Commun. 2021, 12, 34.
dc.identifier.citedreferenceC. Tian, W. Qian, X. Shao, Z. Xie, X. Cheng, S. Liu, Q. Cheng, B. Liu, X. Wang, Adv. Sci. 2016, 3, 1600237.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.