Show simple item record

Reconfigurable Grating Diffraction Structural Color in Self-Assembled Colloidal Crystals

dc.contributor.authorLiu, Tianyu
dc.contributor.authorSolomon, Michael J.
dc.date.accessioned2023-10-02T15:26:07Z
dc.date.available2024-10-02 11:26:05en
dc.date.available2023-10-02T15:26:07Z
dc.date.issued2023-09
dc.identifier.citationLiu, Tianyu; Solomon, Michael J. (2023). "Reconfigurable Grating Diffraction Structural Color in Self-Assembled Colloidal Crystals." Small 19(37): n/a-n/a.
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.urihttps://hdl.handle.net/2027.42/178204
dc.description.abstractSelf-assembled colloidal crystals display structural colors due to light diffracted from their microscale, ordered structure. This color arises due to Bragg reflection (BR) or grating diffraction (GD); the latter mechanism is much less explored than the former. Here the design space for generating GD structural color is identified and its relative advantages are demonstrated. Electrophoretic deposition is used to self-assemble crystals with fine crystal grains from colloids of diameter 1.0 µm. The structural color in transmission is tunable across the full visible spectrum. The optimum optical response—represented by both color intensity and saturation—is observed at low layer number (≤5 layers). The spectral response is well predicted by Mie scattering of the crystals. Taken together, the experimental and theoretical results demonstrate that vivid grating colors with high color saturation can be produced from thin layers of micron-sized colloids. These colloidal crystals extend the potential of artificial structural color materials.Structural color in nature is generated by two primary mechanisms—Bragg reflection (BR) and grating diffraction (GD). Yet, the use of self-assembly to produce artificial materials with GD structural color lags relative to those based on BR. Here is demonstrated prismatic, GD structural color in thin films of latex colloidal crystals, as produced by electrophoretic deposition.
dc.publisherNewport Corporation
dc.publisherWiley Periodicals, Inc.
dc.subject.otherlight scattering and Mie theory
dc.subject.otherstructural color
dc.subject.othercolloidal self-assembly
dc.subject.othercolloidal crystals
dc.titleReconfigurable Grating Diffraction Structural Color in Self-Assembled Colloidal Crystals
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/178204/1/smll202301871_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/178204/2/smll202301871.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/178204/3/smll202301871-sup-0001-SuppMat.pdf
dc.identifier.doi10.1002/smll.202301871
dc.identifier.sourceSmall
dc.identifier.citedreferenceR. S. Zola, H. K. Bisoyi, H. Wang, A. M. Urbas, T. J. Bunning, Q. Li, Adv. Mater. 2019, 31, 1806172.
dc.identifier.citedreferenceJ. C. Crocker, D. G. Grier, J. Colloid Interface Sci. 1996, 179, 298.
dc.identifier.citedreferenceH. Cong, B. Yu, S. Wang, L. Qi, J. Wang, Y. Ma, Opt. Express 2013, 21, 17831.
dc.identifier.citedreferenceM. Xu, A. E. Seago, T. D. Sutherland, S. Weisman, J. Morphol. 2010, 271, 1300.
dc.identifier.citedreferenceR. Halir, P. J. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D. X. Xu, J. G. Wangüemert-Pérez, Í. Molina-Fernández, S. Janz, Laser Photonics Rev. 2015, 9, 25.
dc.identifier.citedreferenceA. T. L. Tan, S. Nagelberg, E. Chang-Davidson, J. Tan, J. K. W. Yang, M. Kolle, A. J. Hart, Small 2020, 16, 1905519.
dc.identifier.citedreferenceN. Vogel, S. Utech, G. T. England, T. Shirman, K. R. Phillips, N. Koay, I. B. Burgess, M. Kolle, D. A. Weitz, J. Aizenberg, Proc. Natl. Acad. Sci. USA 2015, 112, 10845.
dc.identifier.citedreferenceC. Fouquet, J. F. Gilles, N. Heck, M. D. Santos, R. Schwartzmann, V. Cannaya, M. P. Morel, R. S. Davidson, A. Trembleau, S. Bolte, PLoS One 2015, 10, e0121096.
dc.identifier.citedreferenceV. Piccolo, A. Chiappini, C. Armellini, M. Barozzi, A. Lukowiak, P. J. Sazio, A. Vaccari, M. Ferrari, D. Zonta, Micromachines 2018, 9, 345.
dc.identifier.citedreferenceC. Palmer, E. Loewen, Diffraction Grating Handbook, 6th ed., Newport Corporation, New York 2005.
dc.identifier.citedreferenceE. G. Loewen, E. Popov, Diffraction Gratings and Applications, CRC Press, Boca Raton 1997.
dc.identifier.citedreferenceH. Ding, C. Liu, H. Gu, Y. Zhao, B. Wang, Z. Gu, ACS Photonics 2014, 1, 121.
dc.identifier.citedreferenceY. Cao, P. X. Wang, F. D’acierno, W. Y. Hamad, C. A. Michal, M. J. Maclachlan, Adv. Mater. 2020, 32, 1907376.
dc.identifier.citedreferenceTrackpy, http://soft-matter.github.io/trackpy/v0.5.0/ (accessed: April 2023 ).
dc.identifier.citedreferenceS.-Y. Huang, B. Y. Huang, C. C. Kang, C. T. Kuo, Polymers 2020, 12, 1929.
dc.identifier.citedreferenceR. G. Lindquist, T. M. Leslie, J. H. Kulick, G. P. Nordin, J. M. Jarem, S. T. Kowel, M. Friends, Opt. Lett. 1994, 19, 670.
dc.identifier.citedreferenceO. J. A. Schueller, D. C. Duffy, J. A. Rogers, S. T. Brittain, G. M. Whitesides, Sens. Actuators, A Phys 1999, 78, 149.
dc.identifier.citedreferenceK. Baek, Y. Kim, S. Mohd-Noor, J. K. Hyun, ACS Appl. Mater. Interfaces 2020, 12, 5300.
dc.identifier.citedreferenceS. J. Lee, S. Kumar, J. W. Choi, J. S. Lee, J. Colloid Interface Sci. 2020, 560, 894.
dc.identifier.citedreferenceW. Loose, B. J. Ackerson, J. Chem. Phys. 1994, 101, 7211.
dc.identifier.citedreferenceH. Nam, K. Song, D. Ha, T. Kim, Sci. Rep. 2016, 6, 30885.
dc.identifier.citedreferenceV. Hwang, A. B. Stephenson, S. Barkley, S. Brandt, M. Xiao, J. Aizenberg, V. N. Manoharan, Proc. Natl. Acad. Sci. USA 2021, 118, e2015551118.
dc.identifier.citedreferenceY. Kim, A. A. Shah, M. J. Solomon, Nat. Commun. 2014, 5, 3676.
dc.identifier.citedreferenceJ. A. Ferrar, M. J. Solomon, Soft Matter 2015, 11, 3599.
dc.identifier.citedreferenceP. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods, Advanced Series in Applied Physics, Vol. 2, World Scientific, Singapore 1990.
dc.identifier.citedreferenceS. Kinoshita, S. Yoshioka, ChemPhysChem 2005, 6, 1442.
dc.identifier.citedreferenceP. Vukusic, J. R. Sambles, Nature 2003, 424, 852.
dc.identifier.citedreferenceF. Liu, B. Q. Dong, X. H. Liu, Y. M. Zheng, J. Zi, Opt. Express 2009, 17, 16183.
dc.identifier.citedreferenceD. W. Lee, Nature 1991, 349, 260.
dc.identifier.citedreferenceM. Srinivasarao, Chem. Rev. 1999, 99, 1935.
dc.identifier.citedreferenceE. S. A. Goerlitzer, R. N. K. Taylor, N. Vogel, Adv. Mater. 2018, 30, 1706654.
dc.identifier.citedreferenceG. H. Lee, J. Y. Sim, S. H. Kim, ACS Appl. Mater. Interfaces 2016, 8, 12473.
dc.identifier.citedreferenceL. Schertel, L. Siedentop, J. M. Meijer, P. Keim, C. M. Aegerter, G. J. Aubry, G. Maret, Adv. Opt. Mater. 2019, 7, 1900442.
dc.identifier.citedreferenceM. Xiao, A. B. Stephenson, A. Neophytou, V. Hwang, D. Chakrabarti, V. N. Manoharan, Opt. Express 2021, 29, 21212.
dc.identifier.citedreferenceF. Chen, Y. Huang, R. Li, S. Zhang, Q. Jiang, Y. Luo, B. Wang, W. Zhang, X. Wu, F. Wang, P. Lyu, S. Zhao, W. Xu, F. Wei, R. Zhang, Sci. Adv. 2022, 8, eabn5882.
dc.identifier.citedreferenceF. Fu, L. Shang, Z. Chen, Y. Yu, Y. Zhao, Sci. Rob. 2018, 3, eaar8580.
dc.identifier.citedreferenceR. M. Kramer, W. J. Crookes-Goodson, R. R. Naik, Nat. Mater. 2007, 6, 533.
dc.identifier.citedreferenceD. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D. S. Gianola, S. Yang, Adv. Mater. 2015, 27, 2489.
dc.identifier.citedreferenceT. Kim, J. W. Lee, C. Park, K. Lee, C. E. Lee, S. Lee, Y. Kim, S. Kim, S. Jeon, D. Y. Ryu, W. G. Koh, C. Park, Nano Energy 2022, 92, 106688.
dc.identifier.citedreferenceW. Fan, J. Zeng, Q. Gan, D. Ji, H. Song, W. Liu, L. Shi, L. Wu, Sci. Adv. 2022, 5, eaaw8755.
dc.identifier.citedreferenceJ. B. Kim, S. Y. Lee, J. M. Lee, S. H. Kim, ACS Appl. Mater. Interfaces 2019, 11, 14485.
dc.identifier.citedreferenceC. Wang, X. Lin, C. G. Schäfer, S. Hirsemann, J. Ge, Adv. Funct. Mater. 2021, 31, 2008601.
dc.identifier.citedreferenceM. Qin, Y. Huang, Y. Li, M. Su, B. Chen, H. Sun, P. Yong, C. Ye, F. Li, Y. Song, Angew. Chem., Int. Ed. 2016, 55, 6911.
dc.identifier.citedreferenceW. Yuan, N. Zhou, L. Shi, K. Q. Zhang, ACS Appl. Mater. Interfaces 2015, 7, 14064.
dc.identifier.citedreferenceY. Zhao, Z. Xie, H. Gu, C. Zhu, Z. Gu, Chem. Soc. Rev. 2012, 41, 3297.
dc.identifier.citedreferenceA. A. Shah, M. Ganesan, J. Jocz, M. J. Solomon, ACS Nano 2014, 8, 8095.
dc.identifier.citedreferenceJ. Gong, N. Wu, Langmuir 2017, 33, 5769.
dc.identifier.citedreferenceY. Luo, J. Zhang, A. Sun, C. Chu, S. Zhou, J. Guo, T. Chen, G. Xu, J. Mater. Chem. C 2014, 2, 1990.
dc.identifier.citedreferenceA. A. Shah, B. Schultz, W. Zhang, S. C. Glotzer, M. J. Solomon, Nat. Mater. 2015, 14, 117.
dc.identifier.citedreferenceM. Wang, L. He, W. Xu, X. Wang, Y. Yin, Angew. Chem., Int. Ed. 2015, 54, 7077.
dc.identifier.citedreferenceT. Liu, T. Liu, F. Gao, S. C. Glotzer, M. J. Solomon, J. Phys. Chem. B 2022, 126, 1315.
dc.identifier.citedreferenceT. Liu, B. Vansaders, S. C. Glotzer, M. J. Solomon, ACS Appl. Mater. Interfaces 2020, 12, 9842.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.