Show simple item record

Honeybee visitation to shared flowers increases Vairimorpha ceranae prevalence in bumblebees

dc.contributor.authorZbrozek, Maryellen
dc.contributor.authorFearon, Michelle L.
dc.contributor.authorWeise, Chloe
dc.contributor.authorTibbetts, Elizabeth A.
dc.date.accessioned2023-10-02T15:26:29Z
dc.date.available2024-10-02 11:26:28en
dc.date.available2023-10-02T15:26:29Z
dc.date.issued2023-09
dc.identifier.citationZbrozek, Maryellen; Fearon, Michelle L.; Weise, Chloe; Tibbetts, Elizabeth A. (2023). "Honeybee visitation to shared flowers increases Vairimorpha ceranae prevalence in bumblebees." Ecology and Evolution (9): n/a-n/a.
dc.identifier.issn2045-7758
dc.identifier.issn2045-7758
dc.identifier.urihttps://hdl.handle.net/2027.42/178216
dc.description.abstractVairimorpha (=Nosema) ceranae is a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competent V. ceranae hosts and previous work in experimental flight cages suggests V. ceranae can be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence of V. ceranae among multiple bee species has not been explored. Here, we analyzed the number and duration of pollinator visits to particular components of squash flowers—including the petals, stamen, and nectary—at six farms in southeastern Michigan, USA. We also determined the prevalence of V. ceranae in honeybees and bumblebees at each site. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar were linked with greater V. ceranae prevalence in bumblebees. Honeybee visitation patterns appear to have a disproportionately large impact on V. ceranae prevalence in bumblebees even though honeybees are not the most frequent flower visitors. Floral visitation by squash bees or other pollinators was not linked with V. ceranae prevalence in bumblebees. Further, V. ceranae prevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species. These results suggest that honeybee visitation behaviors on shared floral resources may be an important contributor to increased V. ceranae spillover to bumblebees in the field. Understanding how V. ceranae prevalence is influenced by pollinator behavior in the shared floral landscape is critical for reducing parasite spillover into declining wild bee populations.We conducted an observational study among different pollinator communities in agricultural fields to understand (1) how floral visitation patterns differ among pollinator species and (2) whether the visitation patterns are linked with V. ceranae prevalence in honeybees and bumblebees. Our results showed that more honeybee flower contacts and longer duration of contacts with pollen and nectar simultaneously were linked with greater V. ceranae prevalence in bumblebees, even though honeybees were not the most frequent floral visitors. Meanwhile, V. ceranae prevalence in honeybees was unaffected by floral visitation behaviors by any pollinator species.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherparasite spillover
dc.subject.otherbehavior
dc.subject.otherenvironmental transmission
dc.subject.otherhost–parasite interactions
dc.subject.otherNosema
dc.titleHoneybee visitation to shared flowers increases Vairimorpha ceranae prevalence in bumblebees
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/178216/1/ece310528_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/178216/2/ece310528.pdf
dc.identifier.doi10.1002/ece3.10528
dc.identifier.sourceEcology and Evolution
dc.identifier.citedreferencePaxton, R. J., Klee, J., Korpela, S., & Fries, I. ( 2007 ). Nosema ceranae has infected Apis mellifera in Europe since at least 1998 and may be more virulent than Nosema apis. Apidologie, 38, 558 – 565.
dc.identifier.citedreferenceNaughton, J., Tiedeken, E. J., Garvey, M., Stout, J. C., & Rowan, N. J. ( 2017 ). Pulsed light inactivation of the bumble bee trypanosome parasite Crithidia bombi. Journal of Apicultural Research, 56, 144 – 154.
dc.identifier.citedreferenceNepi, M., & Pacini, E. ( 1993 ). Pollination, pollen viability and pistil receptivity in Curcurbita pepo. Annals of Botany, 72, 527 – 536.
dc.identifier.citedreferencePalmer-Young, E. C., Sadd, B. M., Stevenson, P. C., Irwin, R. E., & Adler, L. S. ( 2016 ). Bumble bee parasite strains vary in resistance to phytochemicals. Scientific Reports, 6, 1 – 14.
dc.identifier.citedreferencePiiroinen, S., & Goulson, D. ( 2016 ). Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees. Proceedings of the Royal Society B, 283, 20160246.
dc.identifier.citedreferencePiot, N., Smagghe, G., & Meeus, I. ( 2020 ). Network centrality as an indicator for pollinator parasite transmission via flowers. Insects, 11, 1 – 12.
dc.identifier.citedreferencePlischuk, S., Martín-Hernández, R., Prieto, L., Lucía, M., Botías, C., Meana, A., Abrahamovich, A. H., Lange, C., & Higes, M. ( 2009 ). South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (microsporidia), an emerging pathogen of honeybees ( Apis mellifera ). Environmental Microbiology Reports, 1, 131 – 135.
dc.identifier.citedreferencePorrini, M. P., Porrini, L. P., Garrido, P. M., de Melo, C., e Silva Neto, D. P., Porrini, F. M., Nuñez, L. A., Alvarez, L., Iriarte, P. F., & Eguaras, M. J. ( 2017 ). Nosema ceranae in south American native stingless bees and social wasp. Microbial Ecology, 74, 761 – 764.
dc.identifier.citedreferencePotts, S. G., Biesmeijer, J. C., Kremen, C., Neumann, P., Schweiger, O., & Kunin, W. E. ( 2010 ). Global pollinator declines: Trends, impacts and drivers. Trends in Ecology & Evolution, 25, 345 – 353.
dc.identifier.citedreferenceProuty, C., Jack, C., Sagili, R., & Ellis, J. D. ( 2023 ). Evaluating the efficacy of common treatments used for Vairimorpha (Nosema) spp. control. Applied Sciences, 13, 1303.
dc.identifier.citedreferencePurkiss, T., & Lach, L. ( 2019 ). Pathogen spillover from Apis mellifera to a stingless bee. Proceedings of the Royal Society B: Biological Sciences, 286, 20191071.
dc.identifier.citedreferenceR Core Team. ( 2020 ). R: A language and environment for statistical computing.
dc.identifier.citedreferenceRicketts, T. H., Regetz, J., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., Bogdanski, A., Gemmill-Herren, B., Greenleaf, S., & Klein, A. M. ( 2008 ). Landscape effects on crop pollination services: Are there general patterns? Ecology Letters, 11, 499 – 515.
dc.identifier.citedreferenceRoberts, K. E., & Hughes, W. O. H. ( 2015 ). Horizontal transmission of a parasite is influenced by infected host phenotype and density. Parasitology, 142, 395 – 405.
dc.identifier.citedreferenceRuiz-González, M. X., Bryden, J., Moret, Y., Reber-funk, C., Schmid-Hempel, P., & Brown, M. J. F. ( 2012 ). Dynamic transmission, host quality, and population structure in a multihost parasite of bumblebees. Evolution, 66, 3053 – 3066.
dc.identifier.citedreferenceRussell, A. L., Rebolleda-Gómez, M., Shaible, T. M., & Ashman, T. L. ( 2019 ). Movers and shakers: Bumble bee foraging behavior shapes the dispersal of microbes among and within flowers. Ecosphere, 10, e02714.
dc.identifier.citedreferenceSalvarrey, S., Antúnez, K., Arredondo, D., Plischuk, S., Revainera, P., Maggi, M., & Invernizzi, C. ( 2021 ). Parasites and RNA viruses in wild and laboratory reared bumble bees Bombus pauloensis (Hymenoptera: Apidae) from Uruguay. PLoS One, 16, 1 – 14.
dc.identifier.citedreferenceShuler, R. E., Roulston, T. H., & Farris, G. E. ( 2005 ). Farming practices influence wild pollinator populations on squash and pumpkin. Journal of Economic Entomology, 98, 790 – 795.
dc.identifier.citedreferenceSmith, M. L. ( 2012 ). The honey bee parasite Nosema ceranae: Transmissible via food exchange? PLoS One, 7, 1 – 6.
dc.identifier.citedreferenceStevenson, M., Sergeant, E., Nunes, T., Heuer, C., Marshall, J., Sanchez, J., Thornton, R., Reiczigel, J., Robison-Cox, J., Paola, S., Solymos, P., Yoshida, K., Jones, G., Pirikahu, S., Firestone, S., Kyle, R., Popp, J., Jay, M., & Reynard, C. ( 2021 ). CRAN – package epiR. https://cran.r-project.org/web/packages/epiR/index.html
dc.identifier.citedreferenceTepedino, V. J. ( 1981 ). The pollination efficiency of the squash bee ( Peponapis pruinosa ) and the honey bee ( Apis mellifera ) on summer squash ( Cucurbita pepo ). Jounal of the Kansas Entomological Society, 54, 359 – 377.
dc.identifier.citedreferenceTokarev, Y. S., Huang, W. F., Solter, L. F., Malysh, J. M., Becnel, J. J., & Vossbrinck, C. R. ( 2020 ). A formal redefinition of the genera Nosema and Vairimorpha (Microsporidia: Nosematidae) and reassignment of species based on molecular phylogenetics. Journal of Invertebrate Pathology, 169, 107279.
dc.identifier.citedreferenceVisscher, P. K., & Seeley, T. D. ( 1982 ). Foraging strategy of honeybee colonies in a temperate deciduous Forest. Ecology, 63, 1790 – 1801.
dc.identifier.citedreferenceAdler, L. S., Irwin, R. E., McArt, S. H., & Vannette, R. L. ( 2021 ). Floral traits affecting the transmission of beneficial and pathogenic pollinator-associated microbes. Current Opinion in Insect Science, 44, 1 – 7.
dc.identifier.citedreferenceAdler, L. S., Michaud, K. M., Ellner, S. P., McArt, S. H., Stevenson, P. C., & Irwin, R. E. ( 2018 ). Disease where you dine: Plant species and floral traits associated with pathogen transmission in bumble bees. Ecology, 99, 2535 – 2545.
dc.identifier.citedreferenceAlbrecht, M., Schmid, B., Hautier, Y., & Müller, C. B. ( 2012 ). Diverse pollinator communities enhance plant reproductive success. Proceedings of the Royal Society B: Biological Sciences, 279, 4845 – 4852.
dc.identifier.citedreferenceAlger, S. A., Alexander Burnham, P., Boncristiani, H. F., & Brody, A. K. ( 2018 ). RNA virus spillover from managed honeybees ( Apis mellifera ) to wild bumblebees ( Bombus spp.). PLoS One, 14, 1 – 13.
dc.identifier.citedreferenceAlger, S. A., Burnham, P. A., & Brody, A. K. ( 2019 ). Flowers as viral hot spots: Honey bees ( Apis mellifera ) unevenly deposit viruses across plant species. PLoS One, 14, 1 – 16.
dc.identifier.citedreferenceAntúnez, K., Meana, A., Zunino, P., Prieto, L., Higes, M., & Martín-Hernández, R. ( 2009 ). Immune suppression in the honey bee ( Apis mellifera ) following infection by Nosema ceranae (microsporidia). Environmental Microbiology, 11, 2284 – 2290.
dc.identifier.citedreferenceArbulo, N., Antúnez, K., Salvarrey, S., Santos, E., Branchiccela, B., Martín-Hernández, R., Higes, M., & Invernizzi, C. ( 2015 ). High prevalence and infection levels of Nosema ceranae in bumblebees Bombus atratus and Bombus bellicosus from Uruguay. Journal of Invertebrate Pathology, 130, 165 – 168.
dc.identifier.citedreferenceAscher, J. S., & Pickering, J. ( 2013 ). Discover life bee species guide and world checklist (Hymenoptera: Apoidea: Anthophila). https://www.discoverlife.org/mp/20q?guide=Apoidea_species
dc.identifier.citedreferenceBartlett, L. J., Rozins, C., Brosi, B. J., Delaplane, K. S., de Roode, J. C., White, A., Wilfert, L., & Boots, M. ( 2019 ). Industrial bees: The impact of apicultural intensification on local disease prevalence. Journal of Applied Ecology, 56, 2195 – 2205.
dc.identifier.citedreferenceBates, D., Mächler, M., Bolker, B. M., & Walker, S. C. ( 2015 ). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1 – 48.
dc.identifier.citedreferenceBeismeijer, J., Roberts, S., Reemer, M., Ohlemuller, R., Edwards, M., Peeters, T., Schaffers, A., Potts, S., Kleukers, R., Thomas, C., Settele, J., & Kunin, W. ( 2006 ). Parallel declines in pollinators and insect-pollinated plants in Britain and The Netherlands. Science, 313, 351 – 354.
dc.identifier.citedreferenceBodden, J. M., Hazlehurst, J. A., Wilson Rankin, E. E., & Rehan, S. ( 2019 ). Floral traits predict frequency of defecation on flowers by foraging bumble bees. Journal of Insect Science, 19, 4 – 6.
dc.identifier.citedreferenceBrooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Mächler, M., & Bolker, B. M. ( 2017 ). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal, 9, 378 – 400.
dc.identifier.citedreferenceBurkle, L., Marlin, J., & Knight, T. ( 2013 ). Plant-pollinator interactions over 120 years: Loss of species, Co-occurrence, and function. Science, 339, 1611 – 1615.
dc.identifier.citedreferenceCardinal, S., Straka, J., & Danforth, B. N. ( 2010 ). Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proceedings of the National Academy of Sciences, 107, 16207 – 16211.
dc.identifier.citedreferenceChen, Y., Evans, J. D., Smith, I. B., & Pettis, J. S. ( 2008 ). Nosema ceranae is a long-present and wide-spread microsporidian infection of the European honey bee ( Apis mellifera ) in the United States. Journal of Invertebrate Pathology, 97, 186 – 188.
dc.identifier.citedreferenceChen, Y. P., Evans, J. D., Murphy, C., Gutell, R., Zuker, M., Gundensen-Rindal, D., & Pettis, J. S. ( 2009 ). Morphological, molecular, and phylogenetic characterization of Nosema ceranae, a microsporidian parasite isolated from the European honey bee, Apis mellifera. Journal of Eukaryotic Microbiology, 56, 142 – 147.
dc.identifier.citedreferenceCilia, G., Flaminio, S., Zavatta, L., Ranalli, R., Quaranta, M., Bortolotti, L., & Nanetti, A. ( 2022 ). Occurrence of honey bee ( Apis mellifera L.) pathogens in wild pollinators in northern Italy. Frontiers in Cellular and Infection Microbiology, 12, 1 – 20.
dc.identifier.citedreferenceColla, S. R., Otterstatter, M. C., Gegear, R. J., & Thomson, J. D. ( 2006 ). Plight of the bumble bee: Pathogen spillover from commercial to wild populations. Biological Conservation, 129, 461 – 467.
dc.identifier.citedreferenceDaszak, P., Cunningham, A., & Hyatt, A. ( 2000 ). Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science, 287, 443 – 449.
dc.identifier.citedreferenceDavis, A. E., Deutsch, K. R., Torres, A. M., Loya, M. J. M., Cody, L. V., Harte, E., Sossa, D., Muñiz, P. A., Ng, W. H., & McArt, S. H. ( 2021 ). Eristalis flower flies can be mechanical vectors of the common trypanosome bee parasite, Crithidia bombi. Scientific Reports, 11, 15852.
dc.identifier.citedreferenceDurrer, S., & Schmid-Hempel, P. ( 1994 ). Shared use of flowers leads to horizontal pathogen transmission. Proceedings of the Royal Society of London. Series B: Biological Sciences, 258, 299 – 302.
dc.identifier.citedreferenceEberl, H. J., & Muhammad, N. ( 2022 ). Mathematical modelling of between hive transmission of Nosemosis by drifting. Communications in Nonlinear Science and Numerical Simulation, 114, 106636.
dc.identifier.citedreferenceFearon, M. L., & Tibbetts, E. A. ( 2021 ). Pollinator community species richness dilutes prevalence of multiple viruses within multiple host species. Ecology, 102, 1 – 14.
dc.identifier.citedreferenceFearon, M. L., Wood, C. L., & Tibbetts, E. A. ( 2023 ). Habitat quality influences pollinator pathogen prevalence through both habitat–disease and biodiversity–disease pathways. Ecology, 104, 1 – 15.
dc.identifier.citedreferenceFernandez de Landa, G., Arcerito, F. R. M., Corti, C., Revainera, P. D., Nicolli, A. R., Zumpano, F., Brasesco, C., Quintana, S., Fernandez de Landa, M., Ramos, F., Petrigh, R., Eguaras, M. J., Galetto, L., & Maggi, M. ( 2022 ). Can the exotic pathogen Nosema ceranae affect the amount of Cucurbita maxima pollen grains transported by the native bee Eucera fervens? Arthropod-Plant Interactions, 16, 607 – 615.
dc.identifier.citedreferenceFigueroa, L. L., Blinder, M., Grincavitch, C., Jelinek, A., Mann, E. K., Merva, L. A., Metz, L. E., Zhao, A. Y., Irwin, R. E., McArt, S. H., & Adler, L. S. ( 2019 ). Bee pathogen transmission dynamics: Deposition, persistence and acquisition on flowers. Proceedings of the Royal Society B: Biological Sciences, 286, 20190603.
dc.identifier.citedreferenceFigueroa, L. L., Grab, H., Ng, W. H., Myers, C. R., Graystock, P., McFrederick, Q. S., & McArt, S. H. ( 2020 ). Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecology Letters, 23, 1212 – 1222.
dc.identifier.citedreferenceFries, I. ( 2010 ). Nosema ceranae in European honey bees ( Apis mellifera ). Journal of Invertebrate Pathology, 103, S73 – S79.
dc.identifier.citedreferenceFurst, M., McMahon, D., Osborne, J., Paxton, R., & Brown, M. ( 2014 ). Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature, 506, 364 – 366.
dc.identifier.citedreferenceGoulson, D., & Hughes, W. O. H. ( 2015 ). Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biological Conservation, 191, 10 – 19.
dc.identifier.citedreferenceGraystock, P., Goulson, D., & Hughes, W. O. H. ( 2015 ). Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proceedings of the Royal Society B: Biological Sciences, 282, 20151371.
dc.identifier.citedreferenceGraystock, P., Ng, W. H., Parks, K., Tripodi, A. D., Muñiz, P. A., Fersch, A. A., Myers, C. R., McFrederick, Q. S., & McArt, S. H. ( 2020 ). Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nature Ecology & Evolution, 4, 1358 – 1367.
dc.identifier.citedreferenceGraystock, P., Yates, K., Darvill, B., Goulson, D., & Hughes, W. O. H. ( 2013 ). Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. Journal of Invertebrate Pathology, 114, 114 – 119.
dc.identifier.citedreferenceGreenleaf, S. S., Williams, N. M., Winfree, R., & Kremen, C. ( 2007 ). Bee foraging ranges and their relationship to body size. Oecologia, 153, 589 – 596.
dc.identifier.citedreferenceHartig, F. ( 2020 ). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/package=DHARMa
dc.identifier.citedreferenceHiges, M., Martín-Hernández, R., Botías, C., Bailón, E. G., González-Porto, A. V., Barrios, L., Del Nozal, M. J., Bernal, J. L., Jiménez, J. J., Palencia, P. G., & Meana, A. ( 2008 ). How natural infection by Nosema ceranae causes honeybee colony collapse. Environmental Microbiology, 10, 2659 – 2669.
dc.identifier.citedreferenceHiges, M., Martín-Hernández, R., Garrido-Bailón, E., García-Palencia, P., & Meana, A. ( 2008 ). Detection of infective Nosema ceranae (microsporidia) spores in corbicular pollen of forager honeybees. Journal of Invertebrate Pathology, 97, 76 – 78.
dc.identifier.citedreferenceHiges, M., Martin-Hernandez, R., & Meana, A. ( 2010 ). Nosema ceranae in Europe: An emergent type C nosemosis. Apidologie, 41, 375 – 392.
dc.identifier.citedreferenceHiges, M., Meana, A., Bartolomé, C., Botías, C., & Martín-Hernández, R. ( 2013 ). Nosema ceranae (microsporidia), a controversial 21st century honey bee pathogen. Environmental Microbiology Reports, 5, 17 – 29.
dc.identifier.citedreferenceHuang, W., Solter, L. F., Yau, P. M., & Imai, B. S. ( 2013 ). Nosema ceranae escapes Fumagillin control in honey bees. PLoS Pathogens, 9, e1003185.
dc.identifier.citedreferenceHurd, P. D., Linsley, E. G., & Whitaker, T. W. ( 1971 ). Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution, 25, 218 – 234.
dc.identifier.citedreferenceJones, L. J., Ford, R. P., Schilder, R. J., & López-Uribe, M. M. ( 2021 ). Honey bee viruses are highly prevalent but at low intensities in wild pollinators of cucurbit agroecosystems. Journal of Invertebrate Pathology, 185, 107667.
dc.identifier.citedreferenceJones, L. J., Singh, A., Schilder, R. J., & López-Uribe, M. M. ( 2022 ). Squash bees host high diversity and prevalence of parasites in the northeastern United States. Journal of Invertebrate Pathology, 195, 107848.
dc.identifier.citedreferenceKeesing, F., Holt, R. D., & Ostfeld, R. S. ( 2006 ). Effects of species diversity on disease risk. Ecology Letters, 9, 485 – 498.
dc.identifier.citedreferenceLenth, R., Buerkner, P., Herve, M., Love, J., Riebl, H., & Singmann, H. ( 2020 ). CRAN – package emmeans. https://cran.r-project.org/web/packages/emmeans/index.html
dc.identifier.citedreferenceLópez-Uribe, M. M., Cane, J. H., Minckley, R. L., & Danforth, B. N. ( 2016 ). Crop domestication facilitated rapid geographical expansion of a specialist pollinator, the squash bee Peponapis pruinosa. Proceedings of the Royal Society B: Biological Sciences, 283, 20160443.
dc.identifier.citedreferenceMacías-Macías, J. O., Rivera, J. C. T., De Mora, A., González, J. M. T., Escareño, F. C., Petukhova, T., Morfin, N., & Novoa, E. G. ( 2020 ). Nosema ceranae causes cellular immunosuppression and interacts with thiamethoxam to increase mortality in the stingless bee Melipona colimana. Scientific Reports, 10, 1 – 8.
dc.identifier.citedreferenceMartín-Hernández, R., Bartolomé, C., Chejanovsky, N., Le Conte, Y., Dalmon, A., Dussaubat, C., García-Palencia, P., Meana, A., Pinto, M. A., Soroker, V., & Higes, M. ( 2018 ). Nosema ceranae in Apis mellifera: A 12 years postdetection perspective. Environmental Microbiology, 20, 1302 – 1329.
dc.identifier.citedreferenceMcArt, S. H., Koch, H., Irwin, R. E., & Adler, L. S. ( 2014 ). Arranging the bouquet of disease: Floral traits and the transmission of plant and animal pathogens. Ecology Letters, 17, 624 – 636.
dc.identifier.citedreferenceMüller, U., McMahon, D. P., & Rolff, J. ( 2019 ). Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agricultural and Forest Entomology, 21, 363 – 371.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.