Show simple item record

Recreating the California New Year’s Flood Event of 1997 in a Regionally Refined Earth System Model

dc.contributor.authorRhoades, Alan M.
dc.contributor.authorZarzycki, Colin M.
dc.contributor.authorInda-Diaz, Héctor A.
dc.contributor.authorOmbadi, Mohammed
dc.contributor.authorPasquier, Ulysse
dc.contributor.authorSrivastava, Abhishekh
dc.contributor.authorHatchett, Benjamin J.
dc.contributor.authorDennis, Eli
dc.contributor.authorHeggli, Anne
dc.contributor.authorMcCrary, Rachel
dc.contributor.authorMcGinnis, Seth
dc.contributor.authorRahimi-Esfarjani, Stefan
dc.contributor.authorSlinskey, Emily
dc.contributor.authorUllrich, Paul A.
dc.contributor.authorWehner, Michael
dc.contributor.authorJones, Andrew D.
dc.date.accessioned2023-11-06T16:34:09Z
dc.date.available2024-11-06 11:33:58en
dc.date.available2023-11-06T16:34:09Z
dc.date.issued2023-10
dc.identifier.citationRhoades, Alan M.; Zarzycki, Colin M.; Inda-Diaz, Héctor A. ; Ombadi, Mohammed; Pasquier, Ulysse; Srivastava, Abhishekh; Hatchett, Benjamin J.; Dennis, Eli; Heggli, Anne; McCrary, Rachel; McGinnis, Seth; Rahimi-Esfarjani, Stefan ; Slinskey, Emily; Ullrich, Paul A.; Wehner, Michael; Jones, Andrew D. (2023). "Recreating the California New Year’s Flood Event of 1997 in a Regionally Refined Earth System Model." Journal of Advances in Modeling Earth Systems 15(10): n/a-n/a.
dc.identifier.issn1942-2466
dc.identifier.issn1942-2466
dc.identifier.urihttps://hdl.handle.net/2027.42/191350
dc.description.abstractThe 1997 New Year’s flood event was the most costly in California’s history. This compound extreme event was driven by a category 5 atmospheric river that led to widespread snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff causing widespread inundation in the Sacramento Valley. This study recreates the 1997 flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth System Model (RRM-E3SM) under prescribed ocean conditions. Understanding the processes causing extreme events informs practical efforts to anticipate and prepare for such events in the future, and also provides a rich context to evaluate model skill in representing extremes. Three California-focused RRM grids, with horizontal resolution refinement of 14 km down to 3.5 km, and six forecast lead times, 28 December 1996 at 00Z through 30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Planetary to synoptic scale atmospheric circulations and integrated vapor transport are weakly influenced by horizontal resolution refinement over California. Topography and mesoscale circulations, such as the Sierra barrier jet, are better represented at finer horizontal resolutions resulting in better estimates of storm total precipitation and storm duration snowpack changes. Traditional time-series and causal analysis frameworks are used to examine runoff sensitivities state-wide and above major reservoirs. These frameworks show that horizontal resolution plays a more prominent role in shaping reservoir inflows, namely the magnitude and time-series shape, than forecast lead time, 2-to-4 days prior to the 1997 flood onset.Plain Language SummaryThe 1997 California New Year’s flood event caused over a billion dollars in damages. This storm became a central part in guiding efforts to reduce flood risks. Earth system models are increasingly asked to recreate extreme weather events. However, the ability of Earth system models to recreate such events requires rigorous testing. Testing ensures that models provide value in anticipating and planning for future flood events. This is particularly important given the changing climate. We evaluated the Department of Energy’s flagship Earth system model, the Energy Exascale Earth System Model, in its ability to recreate the weather and flood characteristics of the 1997 flood. The model resolution, important for resolving mountain terrain and storm interactions, and forecast lead time, important for storm progression accuracy, are assessed. The multi-forecast average from the highest-resolution model best recreates the observed precipitation, snowpack changes, and flood characteristics. Our findings provide confidence that the highest resolution model could be used to study how a 1997-like flood event would be altered in a warmer world.Key PointsEnergy Exascale Earth System Model forecasts at 3.5 km grid spacing skillfully recreate the hydrometeorology of California’s 1997 floodHorizontal resolution alters the representation of key flood drivers such as the Sierra barrier jet, precipitation extremes, and snowmeltForecast lead time 2-to-4 days prior to the onset of the 1997 flood minimally influences forecast precipitation and snowmelt skill
dc.publisherWiley Periodicals, Inc.
dc.publisherNational Climatic Data Center technical report
dc.subject.otherextremes
dc.subject.otherEarth system model
dc.subject.otherrain-on-snow
dc.subject.otherflood
dc.subject.otherhydrometeorology
dc.subject.otherregionally refined mesh
dc.titleRecreating the California New Year’s Flood Event of 1997 in a Regionally Refined Earth System Model
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191350/1/jame21936_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191350/2/2023MS003793-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191350/3/jame21936.pdf
dc.identifier.doi10.1029/2023MS003793
dc.identifier.sourceJournal of Advances in Modeling Earth Systems
dc.identifier.citedreferenceSeaber, P. R., Kapinos, F. P., & Knapp, G. L. ( 1987 ). Hydrologic unit maps: US Geological Survey water supply paper 2294. U.S. Geological Survey. Retrieved from https://pubs.usgs.gov/wsp/wsp2294/
dc.identifier.citedreferenceRunge, J. ( 2023 ). Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships. Nature Communications, 14 ( 1 ), 1917. https://doi.org/10.1038/s41467-023-37546-1
dc.identifier.citedreferenceRunge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., et al. ( 2019 ). Inferring causation from time series in Earth system sciences. Nature Communications, 10 ( 1 ), 2553. https://doi.org/10.1038/s41467-019-10105-3
dc.identifier.citedreferenceSakaguchi, K., Lu, J., Leung, L. R., Zhao, C., Li, Y., & Hagos, S. ( 2016 ). Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations. Journal of Advances in Modeling Earth Systems, 8 ( 4 ), 1786 – 1805. https://doi.org/10.1002/2016MS000743
dc.identifier.citedreferenceSengupta, A., Singh, B., DeFlorio, M. J., Raymond, C., Robertson, A. W., Zeng, X., et al. ( 2022 ). Advances in subseasonal to seasonal prediction relevant to water management in the western United States. Bulletin of the American Meteorological Society, 103 ( 10 ), E2168 – E2175. https://doi.org/10.1175/BAMS-D-22-0146.1
dc.identifier.citedreferenceShepherd, T. G. ( 2019 ). Storyline approach to the construction of regional climate change information. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475 ( 2225 ), 20190013. https://doi.org/10.1098/rspa.2019.0013
dc.identifier.citedreferenceShields, C. A., Payne, A. E., Shearer, E. J., Wehner, M. F., O’Brien, T. A., Rutz, J. J., et al. ( 2023 ). Future atmospheric rivers and impacts on precipitation: Overview of the ARTMIP Tier 2 high-resolution global warming experiment. Geophysical Research Letters, 50 ( 6 ), e2022GL102091. https://doi.org/10.1029/2022GL102091
dc.identifier.citedreferenceSiirila-Woodburn, E., Rhoades, A., Hatchett, B., Huning, L., Szinai, J., Tague, C., et al. ( 2021 ). Evidence of a low-to-no snow future and its impacts on water resources in the western United States. Nature Reviews Earth & Environment, 2 ( 11 ), 800 – 819. https://doi.org/10.1038/s43017-021-00219-y
dc.identifier.citedreferenceSpirtes, P., & Glymour, C. ( 1991 ). An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review, 9 ( 1 ), 62 – 72. https://doi.org/10.1177/089443939100900106
dc.identifier.citedreferenceSrivastava, A. K., Grotjahn, R., Ullrich, P. A., & Sadegh, M. ( 2021 ). Pooling data improves multimodel idf estimates over median-based IDF estimates: Analysis over the Susquehanna and Florida. Journal of Hydrometeorology, 22 ( 4 ), 971 – 995. https://doi.org/10.1175/JHM-D-20-0180.1
dc.identifier.citedreferenceStillinger, T., Rittger, K., Raleigh, M. S., Michell, A., Davis, R. E., & Bair, E. H. ( 2023 ). Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets. The Cryosphere, 17 ( 2 ), 567 – 590. https://doi.org/10.5194/tc-17-567-2023
dc.identifier.citedreferenceSugihara, G., May, R., Ye, H., hao Hsieh, C., Deyle, E., Fogarty, M., & Munch, S. ( 2012 ). Detecting causality in complex ecosystems. Science, 338 ( 6106 ), 496 – 500. https://doi.org/10.1126/science.1227079
dc.identifier.citedreferenceTang, Q., Golaz, J.-C., Van Roekel, L. P., Taylor, M. A., Lin, W., Hillman, B. R., et al. ( 2022 ). The fully coupled regionally refined model of E3SM version 2: Overview of the atmosphere, land, and river. Geoscientific Model Development Discussions, 1 – 64. https://doi.org/10.5194/gmd-2022-262
dc.identifier.citedreferenceTang, Q., Klein, S. A., Xie, S., Lin, W., Golaz, J.-C., Roesler, E. L., et al. ( 2019 ). Regionally refined test bed in E3SM atmosphere model version 1 (EAMV1) and applications for high-resolution modeling. Geoscientific Model Development, 12 ( 7 ), 2679 – 2706. https://doi.org/10.5194/gmd-12-2679-2019
dc.identifier.citedreferenceTarouilly, E., Li, D., & Lettenmaier, D. P. ( 2021 ). Western U.S. Superfloods in the recent instrumental record. Water Resources Research, 57 ( 9 ), e2020WR029287. https://doi.org/10.1029/2020WR029287
dc.identifier.citedreferenceThe NCAR Command Language (Version 6.6.2). ( 2022 ). The NCAR command language (version 6.6.2). UCAR/NCAR/CISL/TDD. https://doi.org/10.5065/D6WD3XH5
dc.identifier.citedreferenceTrenberth, E., Berry, C., & Buja, E. ( 1993 ). Vertical interpolation and truncation of model-coordinate data. https://doi.org/10.5065/D6HX19NH
dc.identifier.citedreferenceUllrich, P. A. ( 2014 ). Understanding the treatment of waves in atmospheric models. Part 1: The shortest resolved waves of the 1D linearized shallow-water equations. Quarterly Journal of the Royal Meteorological Society, 140 ( 682 ), 1426 – 1440. https://doi.org/10.1002/qj.2226
dc.identifier.citedreferenceUllrich, P. A., Devendran, D., & Johansen, H. ( 2016 ). Arbitrary-order conservative and consistent remapping and a theory of linear maps: Part II. Monthly Weather Review, 144 ( 4 ), 1529 – 1549. https://doi.org/10.1175/mwr-d-15-0301.1
dc.identifier.citedreferenceUllrich, P. A., & Taylor, M. A. ( 2015 ). Arbitrary-order conservative and consistent remapping and a theory of linear maps: Part I. Monthly Weather Review, 143 ( 6 ), 2419 – 2440. https://doi.org/10.1175/mwr-d-14-00343.1
dc.identifier.citedreferenceUllrich, P. A., & Zarzycki, C. M. ( 2017 ). TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geoscientific Model Development, 10 ( 3 ), 1069 – 1090. https://doi.org/10.5194/gmd-10-1069-2017
dc.identifier.citedreferenceUppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., et al. ( 2005 ). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131 ( 612 ), 2961 – 3012. https://doi.org/10.1256/qj.04.176
dc.identifier.citedreferenceWehner, M., Gleckler, P., & Lee, J. ( 2020 ). Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 1, model evaluation. Weather and Climate Extremes, 30, 100283. https://doi.org/10.1016/j.wace.2020.100283
dc.identifier.citedreferenceWehner, M., Lee, J., Risser, M., Ullrich, P., Gleckler, P., & Collins, W. D. ( 2021 ). Evaluation of extreme sub-daily precipitation in high-resolution global climate model simulations. Philosophical Transactions of the Royal Society A, 379 ( 2195 ), 20190545. https://doi.org/10.1098/rsta.2019.0545
dc.identifier.citedreferenceWehner, M. F., Reed, K. A., Li, F., Prabhat, Bacmeister, J., Chen, C.-T., et al. ( 2014 ). The effect of horizontal resolution on simulation quality in the community atmospheric model, CAM5.1. Journal of Advances in Modeling Earth Systems, 6 ( 4 ), 980 – 997. https://doi.org/10.1002/2013MS000276
dc.identifier.citedreferenceWehner, M. F., Zarzycki, C. M., & Patricola, C. M. ( 2019 ). Estimating the human influence on tropical cyclone intensity as the climate changes. In J. Collins & K. J. Walsh (Eds.), Hurricane risk (pp. 235 – 260 ). Springer.
dc.identifier.citedreferenceWhipple, A. A., & Viers, J. H. ( 2019 ). Coupling landscapes and river flows to restore highly modified rivers. Water Resources Research, 55 ( 6 ), 4512 – 4532. https://doi.org/10.1029/2018WR022783
dc.identifier.citedreferenceWhipple, A. A., Viers, J. H., & Dahlke, H. E. ( 2017 ). Flood regime typology for floodplain ecosystem management as applied to the unregulated Cosumnes River of California, United States. Ecohydrology, 10 ( 5 ), e1817. https://doi.org/10.1002/eco.1817
dc.identifier.citedreferenceWing, O. E., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A. M., et al. ( 2022 ). Inequitable patterns of US flood risk in the Anthropocene. Nature Climate Change, 12 ( 2 ), 156 – 162. https://doi.org/10.1038/s41558-021-01265-6
dc.identifier.citedreferenceXu, Z., Di Vittorio, A., Zhang, J., Rhoades, A., Xin, X., Xu, H., & Xiao, C. ( 2021 ). Evaluating variable-resolution CESM over China and Western United States for use in water-energy nexus and impacts modeling. Journal of Geophysical Research: Atmospheres, 126 ( 15 ), e2020JD034361. https://doi.org/10.1029/2020JD034361
dc.identifier.citedreferenceXu, Z., Rhoades, A. M., Johansen, H., Ullrich, P. A., & Collins, W. D. ( 2018 ). An intercomparison of GCM and RCM dynamical downscaling for characterizing the hydroclimatology of California and Nevada. Journal of Hydrometeorology, 19 ( 9 ), 1485 – 1506. https://doi.org/10.1175/JHM-D-17-0181.1
dc.identifier.citedreferenceYang, K., Rittger, K., Musselman, K. N., Bair, E. H., Dozier, J., Margulis, S. A., et al. ( 2023 ). Intercomparison of snow water equivalent products in the Sierra Nevada California using airborne snow observatory data and ground observations. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1106621
dc.identifier.citedreferenceYang, Q., Leung, L. R., Lu, J., Lin, Y.-L., Hagos, S., Sakaguchi, K., & Gao, Y. ( 2017 ). Exploring the effects of a nonhydrostatic dynamical core in high-resolution aquaplanet simulations. Journal of Geophysical Research: Atmospheres, 122 ( 6 ), 3245 – 3265. https://doi.org/10.1002/2016JD025287
dc.identifier.citedreferenceZarzycki, C. M., Jablonowski, C., & Taylor, M. A. ( 2014 ). Using variable-resolution meshes to model tropical cyclones in the community atmosphere model. Monthly Weather Review, 142 ( 3 ), 1221 – 1239. https://doi.org/10.1175/MWR-D-13-00179.1
dc.identifier.citedreferenceZarzycki, C. M., Jablonowski, C., Thatcher, D. R., & Taylor, M. A. ( 2015 ). Effects of localized grid refinement on the general circulation and climatology in the community atmosphere model. Journal of Climate, 28 ( 7 ), 2777 – 2803. https://doi.org/10.1175/JCLI-D-14-00599.1
dc.identifier.citedreferenceZarzycki, C. M., & Ullrich, P. A. ( 2017 ). Assessing sensitivities in algorithmic detection of tropical cyclones in climate data. Geophysical Research Letters, 44 ( 2 ), 1141 – 1149. https://doi.org/10.1002/2016GL071606
dc.identifier.citedreferenceZhou, Y., O’Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., & Rhoades, A. M. ( 2021 ). Uncertainties in atmospheric river lifecycles by detection algorithms: Climatology and variability. Journal of Geophysical Research: Atmospheres, 126 ( 8 ), e2020JD033711. https://doi.org/10.1029/2020JD033711
dc.identifier.citedreferenceAghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., et al. ( 2020 ). Climate extremes and compound hazards in a warming world. Annual Review of Earth and Planetary Sciences, 48 ( 1 ), 519 – 548. https://doi.org/10.1146/annurev-earth-071719-055228
dc.identifier.citedreferenceBambach, N. E., Rhoades, A. M., Hatchett, B. J., Jones, A. D., Ullrich, P. A., & Zarzycki, C. M. ( 2021 ). Projecting climate change in South America using variable-resolution community Earth system model: An application to Chile. International Journal of Climatology, 42 ( 4 ), 1 – 29. https://doi.org/10.1002/joc.7379
dc.identifier.citedreferenceBukovsky, M. S., Gutowski, W., Mearns, L. O., Paquin, D., & Pryor, S. C. ( 2023 ). Climate storylines. Bulletin of the American Meteorological Society, 104 ( 1 ), E96 – E98. https://doi.org/10.1175/BAMS-D-22-0224.1
dc.identifier.citedreferenceCobb, A., Michaelis, A., Iacobellis, S., Ralph, F. M., & Monache, L. D. ( 2021 ). Atmospheric river sectors: Definition and characteristics observed using dropsondes from 2014–20 CalWater and AR Recon. Monthly Weather Review, 149 ( 3 ), 623 – 644. https://doi.org/10.1175/MWR-D-20-0177.1
dc.identifier.citedreferenceCollier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C. D., Riley, W. J., et al. ( 2018 ). The international land model benchmarking (ILAMB) system: Design, theory, and implementation. Journal of Advances in Modeling Earth Systems, 10 ( 11 ), 2731 – 2754. https://doi.org/10.1029/2018MS001354
dc.identifier.citedreferenceCollow, A. B. M., Shields, C. A., Guan, B., Kim, S., Lora, J. M., McClenny, E. E., et al. ( 2022 ). An overview of ARTMIP’s tier 2 reanalysis intercomparison: Uncertainty in the detection of atmospheric rivers and their associated precipitation. Journal of Geophysical Research: Atmospheres, 127 ( 8 ), e2021JD036155. https://doi.org/10.1029/2021JD036155
dc.identifier.citedreferenceCopernicus Climate Change Service Climate Data Store (CDS). ( 2017 ). Copernicus climate change service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyzes of the global climate. Retrieved from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview
dc.identifier.citedreferenceCorringham, T. W., McCarthy, J., Shulgina, T., Gershunov, A., Cayan, D. R., & Ralph, F. M. ( 2022 ). Climate change contributions to future atmospheric river flood damages in the western United States. Scientific Reports, 12 ( 1 ), 1 – 9. https://doi.org/10.1038/s41598-022-15474-2
dc.identifier.citedreferenceCorringham, T. W., Ralph, F. M., Gershunov, A., Cayan, D. R., & Talbot, C. A. ( 2019 ). Atmospheric rivers drive flood damages in the western United States. Science Advances, 5 ( 12 ). https://doi.org/10.1126/sciadv.aax4631
dc.identifier.citedreferenceDaly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., et al. ( 2008 ). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28 ( 15 ), 2031 – 2064. https://doi.org/10.1002/joc.1688
dc.identifier.citedreferenceDanabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et al. ( 2020 ). The community Earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12 ( 2 ), e2019MS001916. https://doi.org/10.1029/2019MS001916
dc.identifier.citedreferenceDeFlorio, M. J., Waliser, D. E., Guan, B., Ralph, F. M., & Vitart, F. ( 2019 ). Global evaluation of atmospheric river subseasonal prediction skill. Climate Dynamics, 52 ( 5–6 ), 3039 – 3060. https://doi.org/10.1007/s00382-018-4309-x
dc.identifier.citedreferenceDettinger, M. D., Martin Ralph, F., Hughes, M., Das, T., Neiman, P., Cox, D., et al. ( 2012 ). Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California. Natural Hazards, 60 ( 3 ), 1085 – 1111. https://doi.org/10.1007/s11069-011-9894-5
dc.identifier.citedreferenceFang, Y., Liu, Y., & Margulis, S. A. ( 2022 ). A western United States snow reanalysis dataset over the Landsat era from water years 1985 to 2021. Scientific Data, 9 ( 1 ), 1 – 17. https://doi.org/10.1038/s41597-022-01768-7
dc.identifier.citedreferenceFasullo, J. T. ( 2020 ). Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the climate model assessment tool (CMATv1). Geoscientific Model Development, 13 ( 8 ), 3627 – 3642. https://doi.org/10.5194/gmd-13-3627-2020
dc.identifier.citedreferenceFish, M. A., Wilson, A. M., & Ralph, F. M. ( 2019 ). Atmospheric river families: Definition and associated synoptic conditions. Journal of Hydrometeorology, 20 ( 10 ), 2091 – 2108. https://doi.org/10.1175/JHM-D-18-0217.1
dc.identifier.citedreferenceGalewsky, J., & Sobel, A. ( 2005 ). Moist dynamics and orographic precipitation in northern and central California during the New Year’s flood of 1997. Monthly Weather Review, 133 ( 6 ), 1594 – 1612. https://doi.org/10.1175/MWR2943.1
dc.identifier.citedreferenceGates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., et al. ( 1999 ). An overview of the results of the atmospheric model intercomparison project (AMIP I). Bulletin of the American Meteorological Society, 80 ( 1 ), 29 – 56. https://doi.org/10.1175/1520-0477(1999)080⟨0029:AOOTRO⟩2.0.CO;2
dc.identifier.citedreferenceGershunov, A., Shulgina, T., Clemesha, R. E., Guirguis, K., Pierce, D. W., Dettinger, M. D., et al. ( 2019 ). Precipitation regime change in western North America: The role of atmospheric rivers. Scientific Reports, 9 ( 1 ), 1 – 11. https://doi.org/10.1038/s41598-019-46169-w
dc.identifier.citedreferenceGettelman, A., Morrison, H., Santos, S., Bogenschutz, P., & Caldwell, P. M. ( 2015 ). Advanced two-moment bulk microphysics for global models. PART II: Global model solutions and aerosol–cloud interactions. Journal of Climate, 28 ( 3 ), 1288 – 1307. https://doi.org/10.1175/JCLI-D-14-00103.1
dc.identifier.citedreferenceGolaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., et al. ( 2022 ). The DOE E3SM model version 2: Overview of the physical model and initial model evaluation. Journal of Advances in Modeling Earth Systems, 14 ( 12 ), e2022MS003156. https://doi.org/10.1029/2022MS003156
dc.identifier.citedreferenceGuan, B., & Waliser, D. E. ( 2017 ). Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. Journal of Geophysical Research: Atmospheres, 122 ( 11 ), 5556 – 5581. https://doi.org/10.1002/2016JD026174
dc.identifier.citedreferenceGuan, B., Waliser, D. E., Ralph, F. M., Fetzer, E. J., & Neiman, P. J. ( 2016 ). Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophysical Research Letters, 43 ( 6 ), 2964 – 2973. https://doi.org/10.1002/2016GL067978
dc.identifier.citedreferenceGutowski, W. J., Ullrich, P. A., Hall, A., Leung, L. R., O’Brien, T. A., Patricola, C. M., et al. ( 2020 ). The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information. Bulletin of the American Meteorological Society, 101 ( 5 ), E664 – E683. https://doi.org/10.1175/BAMS-D-19-0113.1
dc.identifier.citedreferenceHaiden, T., Janousek, M., Vitart, F., Ben-Bouallegue, Z., Ferranti, L., Prates, C., & Richardson, D. ( 2021 ). Evaluation of ECMWF forecasts, including the 2020 upgrade. ECMWF technical Memoranda(880). https://doi.org/10.21957/6njp8byz4
dc.identifier.citedreferenceHanak, E., & Lund, J. R. ( 2012 ). Adapting California’s water management to climate change. Climatic Change, 111 ( 1 ), 17 – 44. https://doi.org/10.1007/s10584-011-0241-3
dc.identifier.citedreferenceHarrop, B. E., Balaguru, K., Golaz, J.-C., Leung, L., Mahajan, S., Rhoades, A., et al. ( 2022 ). Evaluating the water cycle over CONUS at the watershed scale for the Energy Exascale Earth System Model version 1 (E3SMv1) across resolutions. ESS Open Archive. https://doi.org/10.1002/essoar.10512849.1
dc.identifier.citedreferenceHatchett, B. J., & McEvoy, D. J. ( 2018 ). Exploring the origins of snow drought in the northern Sierra Nevada, California. Earth Interactions, 22 ( 2 ), 1 – 13. https://doi.org/10.1175/EI-D-17-0027.1
dc.identifier.citedreferenceHeggli, A., Hatchett, B., Schwartz, A., Bardsley, T., & Hand, E. ( 2022 ). Toward snowpack runoff decision support. iScience, 25 ( 5 ), 104240. https://doi.org/10.1016/j.isci.2022.104240
dc.identifier.citedreferenceHersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 ( 730 ), 1999 – 2049. https://doi.org/10.1002/qj.3803
dc.identifier.citedreferenceHuang, H., Patricola, C. M., Bercos-Hickey, E., Zhou, Y., Rhoades, A., Risser, M. D., & Collins, W. D. ( 2021 ). Sources of subseasonal-to-seasonal predictability of atmospheric rivers and precipitation in the western United States. Journal of Geophysical Research: Atmospheres, 126 ( 6 ), e2020JD034053. https://doi.org/10.1029/2020JD034053
dc.identifier.citedreferenceHuang, X., & Swain, D. L. ( 2022 ). Climate change is increasing the risk of a California megaflood. Science Advances, 8 ( 32 ), eabq0995. https://doi.org/10.1126/sciadv.abq0995
dc.identifier.citedreferenceHughes, M., Neiman, P. J., Sukovich, E., & Ralph, M. ( 2012 ). Representation of the Sierra Barrier Jet in 11 years of a high-resolution dynamical reanalysis downscaling compared with long-term wind profiler observations. Journal of Geophysical Research, 117 ( D18 ), D18116. https://doi.org/10.1029/2012JD017869
dc.identifier.citedreferenceIvancic, T. J., & Shaw, S. B. ( 2015 ). Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Climatic Change, 133 ( 4 ), 681 – 693. https://doi.org/10.1007/s10584-015-1476-1
dc.identifier.citedreferenceJagannathan, K., Jones, A. D., & Ray, I. ( 2021 ). The making of a metric: Co-Producing decision-relevant climate science. Bulletin of the American Meteorological Society, 102 ( 8 ), E1579 – E1590. https://doi.org/10.1175/BAMS-D-19-0296.1
dc.identifier.citedreferenceJones, A. D., Rastogi, D., Vahmani, P., Stansfield, A., Reed, K., Thurber, T., et al. ( 2022 ). IM3/HyperFACETS thermodynamic global warming (TGW) simulation datasets (v1.0.0) [Dataset]. MSD-LIVE Data Repository. https://doi.org/10.57931/1885756
dc.identifier.citedreferenceJones, P. W. ( 1999 ). First- and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127 ( 9 ), 2204 – 2210. https://doi.org/10.1175/1520-0493(1999)127⟨2204:FASOCR⟩2.0.CO;2
dc.identifier.citedreferenceKattelmann, R. ( 1997 ). Flooding from rain-on-snow events in the Sierra Nevada. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 239, 59 – 66.
dc.identifier.citedreferenceKingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. ( 2013 ). Kinematic and thermodynamic structures of sierra barrier jets and overrunning atmospheric rivers during a landfalling winter storm in northern California. Monthly Weather Review, 141 ( 6 ), 2015 – 2036. https://doi.org/10.1175/MWR-D-12-00277.1
dc.identifier.citedreferenceKlaver, R., Haarsma, R., Vidale, P. L., & Hazeleger, W. ( 2020 ). Effective resolution in high resolution global atmospheric models for climate studies. Atmospheric Science Letters, 21 ( 4 ), e952. https://doi.org/10.1002/asl.952
dc.identifier.citedreferenceLa Follette, P. T., Teuling, A. J., Addor, N., Clark, M., Jansen, K., & Melsen, L. A. ( 2021 ). Numerical daemons of hydrological models are summoned by extreme precipitation. Hydrology and Earth System Sciences, 25 ( 10 ), 5425 – 5446. https://doi.org/10.5194/hess-25-5425-2021
dc.identifier.citedreferenceLauritzen, P. H., Bacmeister, J. T., Callaghan, P. F., & Taylor, M. A. ( 2015 ). NCAR_topo (v1.0): NCAR global model topography generation software for unstructured grids. Geoscientific Model Development, 8 ( 12 ), 3975 – 3986. https://doi.org/10.5194/gmd-8-3975-2015
dc.identifier.citedreferenceLavers, D. A., Waliser, D. E., Ralph, F. M., & Dettinger, M. D. ( 2016 ). Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophysical Research Letters, 43 ( 5 ), 2275 – 2282. https://doi.org/10.1002/2016GL067765
dc.identifier.citedreferenceLehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., et al. ( 2020 ). Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 11 ( 2 ), 491 – 508. https://doi.org/10.5194/esd-11-491-2020
dc.identifier.citedreferenceLemos, M. C., Arnott, J. C., Ardoin, N. M., Baja, K., Bednarek, A. T., Dewulf, A., et al. ( 2018 ). To co-produce or not to co-produce. Nature Sustainability, 1 ( 12 ), 722 – 724. https://doi.org/10.1038/s41893-018-0191-0
dc.identifier.citedreferenceLemos, M. C., Kirchhoff, C. J., & Ramprasad, V. ( 2012 ). Narrowing the climate information usability gap. Nature Climate Change, 2 ( 11 ), 789 – 794. https://doi.org/10.1038/nclimate1614
dc.identifier.citedreferenceL’Heureux, M. L., Tippett, M. K., & Becker, E. J. ( 2021 ). Sources of subseasonal skill and predictability in wintertime California precipitation forecasts. Weather and Forecasting, 36 ( 5 ), 1815 – 1826. https://doi.org/10.1175/WAF-D-21-0061.1
dc.identifier.citedreferenceLiu, W., Ullrich, P. A., Guba, O., Caldwell, P. M., & Keen, N. D. ( 2022 ). An assessment of nonhydrostatic and hydrostatic dynamical cores at seasonal time scales in the Energy Exascale Earth System Model (E3SM). Journal of Advances in Modeling Earth Systems, 14 ( 2 ), e2021MS002805. https://doi.org/10.1029/2021MS002805
dc.identifier.citedreferenceLiu, W., Ullrich, P. A., Li, J., Zarzycki, C., Caldwell, P. M., Leung, L. R., & Qian, Y. ( 2023 ). The June 2012 North American Derecho: A testbed for evaluating regional and global climate modeling systems at cloud-resolving scales. Journal of Advances in Modeling Earth Systems, 15 ( 4 ), e2022MS003358. https://doi.org/10.1029/2022MS003358
dc.identifier.citedreferenceLivneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose, R., et al. ( 2015 ). A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Scientific Data, 2 ( 1 ), 150042. https://doi.org/10.1038/sdata.2015.42
dc.identifier.citedreferenceLott, N., Sittel, M. C., & Ross, D. ( 1997 ). The winter of ’96-’97: West coast flooding (Vol. 97–01, pp. 1 – 22 ). National Climatic Data Center technical report. Retrieved from https://repository.library.noaa.gov/view/noaa/13812
dc.identifier.citedreferenceLundquist, J. D., Hughes, M., Gutmann, E., & Kapnick, S. ( 2019 ). Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bulletin of the American Meteorological Society, 100 ( 12 ), 2473 – 2490. https://doi.org/10.1175/BAMS-D-19-0001.1
dc.identifier.citedreferenceLundquist, J. D., Hughes, M., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., & Neiman, P. ( 2015 ). High-elevation precipitation patterns: Using snow measurements to assess daily gridded datasets across the Sierra Nevada, California. Journal of Hydrometeorology, 16 ( 4 ), 1773 – 1792. https://doi.org/10.1175/JHM-D-15-0019.1
dc.identifier.citedreferenceMaina, F. Z., Rhoades, A., Siirila-Woodburn, E. R., & Dennedy-Frank, P.-J. ( 2022 ). Projecting end-of-century climate extremes and their impacts on the hydrology of a representative California watershed. Hydrology and Earth System Sciences, 26 ( 13 ), 3589 – 3609. https://doi.org/10.5194/hess-26-3589-2022
dc.identifier.citedreferenceMann, H. B. ( 1945 ). Nonparametric tests against trend. Econometrica, 13 ( 3 ), 245 – 259. https://doi.org/10.2307/1907187
dc.identifier.citedreferenceMargulis, S. A., Cortés, G., Girotto, M., & Durand, M. ( 2016 ). A Landsat-era Sierra Nevada snow reanalysis (1985–2015). Journal of Hydrometeorology, 17 ( 4 ), 1203 – 1221. https://doi.org/10.1175/JHM-D-15-0177.1
dc.identifier.citedreferenceMurphy, A. H. ( 1993 ). What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting, 8 ( 2 ), 281 – 293. https://doi.org/10.1175/1520-0434(1993)008⟨0281:WIAGFA⟩2.0.CO;2
dc.identifier.citedreferenceNeiman, P. J., Hughes, M., Moore, B. J., Ralph, F. M., & Sukovich, E. M. ( 2013 ). Sierra barrier jets, atmospheric rivers, and precipitation characteristics in northern California: A composite perspective based on a network of wind profilers. Monthly Weather Review, 141 ( 12 ), 4211 – 4233. https://doi.org/10.1175/MWR-D-13-00112.1
dc.identifier.citedreferenceNeiman, P. J., Sukovich, E. M., Ralph, F. M., & Hughes, M. ( 2010 ). A seven-year wind profiler–based climatology of the windward barrier jet along California’s northern Sierra Nevada. Monthly Weather Review, 138 ( 4 ), 1206 – 1233. https://doi.org/10.1175/2009MWR3170.1
dc.identifier.citedreferenceNewman, A. J., Clark, M. P., Craig, J., Nijssen, B., Wood, A., Gutmann, E., et al. ( 2015 ). Gridded ensemble precipitation and temperature estimates for the contiguous United States. Journal of Hydrometeorology, 16 ( 6 ), 2481 – 2500. https://doi.org/10.1175/JHM-D-15-0026.1
dc.identifier.citedreferenceO’Brien, T. A., Wehner, M. F., Payne, A. E., Shields, C. A., Rutz, J. J., Leung, L.-R., et al. ( 2022 ). Increases in future AR count and size: Overview of the ARTMIP Tier 2 CMIP5/6 experiment. Journal of Geophysical Research: Atmospheres, 127 ( 6 ), e2021JD036013. https://doi.org/10.1029/2021JD036013
dc.identifier.citedreferenceOmbadi, M., Nguyen, P., Sorooshian, S., & lin Hsu, K. ( 2020 ). Evaluation of methods for causal discovery in hydrometeorological systems. Water Resources Research, 56 ( 7 ). https://doi.org/10.1029/2020wr027251
dc.identifier.citedreferenceOmbadi, M., Nguyen, P., Sorooshian, S., & lin Hsu, K. ( 2021 ). How much information on precipitation is contained in satellite infrared imagery? Atmospheric Research, 256, 105578. https://doi.org/10.1016/j.atmosres.2021.105578
dc.identifier.citedreferenceOmbadi, M., Risser, M. D., Rhoades, A. M., & Varadharajan, C. ( 2023 ). A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature, 619 ( 7969 ), 1 – 6. https://doi.org/10.1038/s41586-023-06092-7
dc.identifier.citedreferenceOsterhuber, R., & Schwartz, A. ( 2021 ). Snowpack, precipitation, and temperature measurements at the Central Sierra Snow Laboratory for water years 1971 to 2019. Dryad, Dataset. https://doi.org/10.6078/D1941T
dc.identifier.citedreferencePainter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., et al. ( 2016 ). The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sensing of Environment, 184, 139 – 152. https://doi.org/10.1016/j.rse.2016.06.018
dc.identifier.citedreferencePatricola, C. M., Wehner, M. F., Bercos-Hickey, E., Maciel, F. V., May, C., Mak, M., et al. ( 2022 ). Future changes in extreme precipitation over the San Francisco bay area: Dependence on atmospheric river and extratropical cyclone events. Weather and Climate Extremes, 36, 100440. https://doi.org/10.1016/j.wace.2022.100440
dc.identifier.citedreferencePayne, A. E., Demory, M.-E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz, J. J., et al. ( 2020 ). Responses and impacts of atmospheric rivers to climate change. Nature Reviews Earth & Environment, 1 ( 3 ), 143 – 157. https://doi.org/10.1038/s43017-020-0030-5
dc.identifier.citedreferencePierce, D. W., Su, L., Cayan, D. R., Risser, M. D., Livneh, B., & Lettenmaier, D. P. ( 2021 ). An extreme-preserving long-term gridded daily precipitation dataset for the conterminous United States. Journal of Hydrometeorology, 22 ( 7 ), 1883 – 1895. https://doi.org/10.1175/JHM-D-20-0212.1
dc.identifier.citedreferencePorter, K., Wein, A., Alpers, C. N., Baez, A., Barnard, P. L., Carter, J., et al. ( 2011 ). Overview of the ARkStorm scenario (Tech. Rep.). US Geological Survey. Retrieved from https://pubs.er.usgs.gov/publication/ofr20101312
dc.identifier.citedreferenceRalph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M., Reynolds, D., et al. ( 2019 ). A scale to characterize the strength and impacts of atmospheric rivers. Bulletin of the American Meteorological Society, 100 ( 2 ), 269 – 289. https://doi.org/10.1175/BAMS-D-18-0023.1
dc.identifier.citedreferenceRauscher, S. A., & Ringler, T. D. ( 2014 ). Impact of variable-resolution meshes on midlatitude baroclinic eddies using CAM-MPAS-A. Monthly Weather Review, 142 ( 11 ), 4256 – 4268. https://doi.org/10.1175/MWR-D-13-00366.1
dc.identifier.citedreferenceRauscher, S. A., Ringler, T. D., Skamarock, W. C., & Mirin, A. A. ( 2013 ). Exploring a global multiresolution modeling approach using aquaplanet simulations. Journal of Climate, 26 ( 8 ), 2432 – 2452. https://doi.org/10.1175/JCLI-D-12-00154.1
dc.identifier.citedreferenceRaymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., et al. ( 2020 ). Understanding and managing connected extreme events. Nature Climate Change, 10 ( 7 ), 611 – 621. https://doi.org/10.1038/s41558-020-0790-4
dc.identifier.citedreferenceReid, R. L. ( 2015 ). Engineering for every drop. Civil Engineering Magazine, 85 ( 10 ), 46 – 55. https://doi.org/10.1061/ciegag.0001044
dc.identifier.citedreferenceReynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. ( 2007 ). Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20 ( 22 ), 5473 – 5496. https://doi.org/10.1175/2007JCLI1824.1
dc.identifier.citedreferenceRhoades, A. M., Huang, X., Ullrich, P. A., & Zarzycki, C. M. ( 2016 ). Characterizing sierra Nevada snowpack using variable-resolution CESM. Journal of Applied Meteorology and Climatology, 55 ( 1 ), 173 – 196. https://doi.org/10.1175/JAMC-D-15-0156.1
dc.identifier.citedreferenceRhoades, A. M., Jones, A. D., O’Brien, T. A., O’Brien, J. P., Ullrich, P. A., & Zarzycki, C. M. ( 2020 ). Influences of North Pacific ocean domain extent on the western U.S. Winter hydroclimatology in variable-resolution CESM. Journal of Geophysical Research: Atmospheres, 125 ( 14 ), e2019JD031977. https://doi.org/10.1029/2019JD031977
dc.identifier.citedreferenceRhoades, A. M., Jones, A. D., Srivastava, A., Huang, H., O’Brien, T. A., Patricola, C. M., et al. ( 2020 ). The shifting scales of western U.S. landfalling atmospheric rivers under climate change. Geophysical Research Letters, 47 ( 17 ), e2020GL089096. https://doi.org/10.1029/2020GL089096
dc.identifier.citedreferenceRhoades, A. M., Risser, M. D., Stone, D. A., Wehner, M. F., & Jones, A. D. ( 2021 ). Implications of warming on western United States landfalling atmospheric rivers and their flood damages. Weather and Climate Extremes, 32, 100326. https://doi.org/10.1016/j.wace.2021.100326
dc.identifier.citedreferenceRhoades, A. M., Ullrich, P. A., Zarzycki, C. M., Johansen, H., Margulis, S. A., Morrison, H., et al. ( 2018 ). Sensitivity of mountain hydroclimate simulations in variable-resolution CESM to microphysics and horizontal resolution. Journal of Advances in Modeling Earth Systems, 10 ( 6 ), 1357 – 1380. https://doi.org/10.1029/2018MS001326
dc.identifier.citedreferenceRicciotti, J. A., & Cordeira, J. M. ( 2022 ). Summarizing relationships among landfalling atmospheric rivers, integrated water vapor transport, and California watershed precipitation 1982–2019. Journal of Hydrometeorology, 23 ( 9 ), 1439 – 1454. https://doi.org/10.1175/JHM-D-21-0119.1
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.