Recreating the California New Year’s Flood Event of 1997 in a Regionally Refined Earth System Model
dc.contributor.author | Rhoades, Alan M. | |
dc.contributor.author | Zarzycki, Colin M. | |
dc.contributor.author | Inda-Diaz, Héctor A. | |
dc.contributor.author | Ombadi, Mohammed | |
dc.contributor.author | Pasquier, Ulysse | |
dc.contributor.author | Srivastava, Abhishekh | |
dc.contributor.author | Hatchett, Benjamin J. | |
dc.contributor.author | Dennis, Eli | |
dc.contributor.author | Heggli, Anne | |
dc.contributor.author | McCrary, Rachel | |
dc.contributor.author | McGinnis, Seth | |
dc.contributor.author | Rahimi-Esfarjani, Stefan | |
dc.contributor.author | Slinskey, Emily | |
dc.contributor.author | Ullrich, Paul A. | |
dc.contributor.author | Wehner, Michael | |
dc.contributor.author | Jones, Andrew D. | |
dc.date.accessioned | 2023-11-06T16:34:09Z | |
dc.date.available | 2024-11-06 11:33:58 | en |
dc.date.available | 2023-11-06T16:34:09Z | |
dc.date.issued | 2023-10 | |
dc.identifier.citation | Rhoades, Alan M.; Zarzycki, Colin M.; Inda-Diaz, Héctor A. ; Ombadi, Mohammed; Pasquier, Ulysse; Srivastava, Abhishekh; Hatchett, Benjamin J.; Dennis, Eli; Heggli, Anne; McCrary, Rachel; McGinnis, Seth; Rahimi-Esfarjani, Stefan ; Slinskey, Emily; Ullrich, Paul A.; Wehner, Michael; Jones, Andrew D. (2023). "Recreating the California New Year’s Flood Event of 1997 in a Regionally Refined Earth System Model." Journal of Advances in Modeling Earth Systems 15(10): n/a-n/a. | |
dc.identifier.issn | 1942-2466 | |
dc.identifier.issn | 1942-2466 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/191350 | |
dc.description.abstract | The 1997 New Year’s flood event was the most costly in California’s history. This compound extreme event was driven by a category 5 atmospheric river that led to widespread snowmelt. Extreme precipitation, snowmelt, and saturated soils produced heavy runoff causing widespread inundation in the Sacramento Valley. This study recreates the 1997 flood using the Regionally Refined Mesh capabilities of the Energy Exascale Earth System Model (RRM-E3SM) under prescribed ocean conditions. Understanding the processes causing extreme events informs practical efforts to anticipate and prepare for such events in the future, and also provides a rich context to evaluate model skill in representing extremes. Three California-focused RRM grids, with horizontal resolution refinement of 14 km down to 3.5 km, and six forecast lead times, 28 December 1996 at 00Z through 30 December 1996 at 12Z, are assessed for their ability to recreate the 1997 flood. Planetary to synoptic scale atmospheric circulations and integrated vapor transport are weakly influenced by horizontal resolution refinement over California. Topography and mesoscale circulations, such as the Sierra barrier jet, are better represented at finer horizontal resolutions resulting in better estimates of storm total precipitation and storm duration snowpack changes. Traditional time-series and causal analysis frameworks are used to examine runoff sensitivities state-wide and above major reservoirs. These frameworks show that horizontal resolution plays a more prominent role in shaping reservoir inflows, namely the magnitude and time-series shape, than forecast lead time, 2-to-4 days prior to the 1997 flood onset.Plain Language SummaryThe 1997 California New Year’s flood event caused over a billion dollars in damages. This storm became a central part in guiding efforts to reduce flood risks. Earth system models are increasingly asked to recreate extreme weather events. However, the ability of Earth system models to recreate such events requires rigorous testing. Testing ensures that models provide value in anticipating and planning for future flood events. This is particularly important given the changing climate. We evaluated the Department of Energy’s flagship Earth system model, the Energy Exascale Earth System Model, in its ability to recreate the weather and flood characteristics of the 1997 flood. The model resolution, important for resolving mountain terrain and storm interactions, and forecast lead time, important for storm progression accuracy, are assessed. The multi-forecast average from the highest-resolution model best recreates the observed precipitation, snowpack changes, and flood characteristics. Our findings provide confidence that the highest resolution model could be used to study how a 1997-like flood event would be altered in a warmer world.Key PointsEnergy Exascale Earth System Model forecasts at 3.5 km grid spacing skillfully recreate the hydrometeorology of California’s 1997 floodHorizontal resolution alters the representation of key flood drivers such as the Sierra barrier jet, precipitation extremes, and snowmeltForecast lead time 2-to-4 days prior to the onset of the 1997 flood minimally influences forecast precipitation and snowmelt skill | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | National Climatic Data Center technical report | |
dc.subject.other | extremes | |
dc.subject.other | Earth system model | |
dc.subject.other | rain-on-snow | |
dc.subject.other | flood | |
dc.subject.other | hydrometeorology | |
dc.subject.other | regionally refined mesh | |
dc.title | Recreating the California New Year’s Flood Event of 1997 in a Regionally Refined Earth System Model | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Geological Sciences | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191350/1/jame21936_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191350/2/2023MS003793-sup-0001-Supporting_Information_SI-S01.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191350/3/jame21936.pdf | |
dc.identifier.doi | 10.1029/2023MS003793 | |
dc.identifier.source | Journal of Advances in Modeling Earth Systems | |
dc.identifier.citedreference | Seaber, P. R., Kapinos, F. P., & Knapp, G. L. ( 1987 ). Hydrologic unit maps: US Geological Survey water supply paper 2294. U.S. Geological Survey. Retrieved from https://pubs.usgs.gov/wsp/wsp2294/ | |
dc.identifier.citedreference | Runge, J. ( 2023 ). Modern causal inference approaches to investigate biodiversity-ecosystem functioning relationships. Nature Communications, 14 ( 1 ), 1917. https://doi.org/10.1038/s41467-023-37546-1 | |
dc.identifier.citedreference | Runge, J., Bathiany, S., Bollt, E., Camps-Valls, G., Coumou, D., Deyle, E., et al. ( 2019 ). Inferring causation from time series in Earth system sciences. Nature Communications, 10 ( 1 ), 2553. https://doi.org/10.1038/s41467-019-10105-3 | |
dc.identifier.citedreference | Sakaguchi, K., Lu, J., Leung, L. R., Zhao, C., Li, Y., & Hagos, S. ( 2016 ). Sources and pathways of the upscale effects on the Southern Hemisphere jet in MPAS-CAM4 variable-resolution simulations. Journal of Advances in Modeling Earth Systems, 8 ( 4 ), 1786 – 1805. https://doi.org/10.1002/2016MS000743 | |
dc.identifier.citedreference | Sengupta, A., Singh, B., DeFlorio, M. J., Raymond, C., Robertson, A. W., Zeng, X., et al. ( 2022 ). Advances in subseasonal to seasonal prediction relevant to water management in the western United States. Bulletin of the American Meteorological Society, 103 ( 10 ), E2168 – E2175. https://doi.org/10.1175/BAMS-D-22-0146.1 | |
dc.identifier.citedreference | Shepherd, T. G. ( 2019 ). Storyline approach to the construction of regional climate change information. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475 ( 2225 ), 20190013. https://doi.org/10.1098/rspa.2019.0013 | |
dc.identifier.citedreference | Shields, C. A., Payne, A. E., Shearer, E. J., Wehner, M. F., O’Brien, T. A., Rutz, J. J., et al. ( 2023 ). Future atmospheric rivers and impacts on precipitation: Overview of the ARTMIP Tier 2 high-resolution global warming experiment. Geophysical Research Letters, 50 ( 6 ), e2022GL102091. https://doi.org/10.1029/2022GL102091 | |
dc.identifier.citedreference | Siirila-Woodburn, E., Rhoades, A., Hatchett, B., Huning, L., Szinai, J., Tague, C., et al. ( 2021 ). Evidence of a low-to-no snow future and its impacts on water resources in the western United States. Nature Reviews Earth & Environment, 2 ( 11 ), 800 – 819. https://doi.org/10.1038/s43017-021-00219-y | |
dc.identifier.citedreference | Spirtes, P., & Glymour, C. ( 1991 ). An algorithm for fast recovery of sparse causal graphs. Social Science Computer Review, 9 ( 1 ), 62 – 72. https://doi.org/10.1177/089443939100900106 | |
dc.identifier.citedreference | Srivastava, A. K., Grotjahn, R., Ullrich, P. A., & Sadegh, M. ( 2021 ). Pooling data improves multimodel idf estimates over median-based IDF estimates: Analysis over the Susquehanna and Florida. Journal of Hydrometeorology, 22 ( 4 ), 971 – 995. https://doi.org/10.1175/JHM-D-20-0180.1 | |
dc.identifier.citedreference | Stillinger, T., Rittger, K., Raleigh, M. S., Michell, A., Davis, R. E., & Bair, E. H. ( 2023 ). Landsat, MODIS, and VIIRS snow cover mapping algorithm performance as validated by airborne lidar datasets. The Cryosphere, 17 ( 2 ), 567 – 590. https://doi.org/10.5194/tc-17-567-2023 | |
dc.identifier.citedreference | Sugihara, G., May, R., Ye, H., hao Hsieh, C., Deyle, E., Fogarty, M., & Munch, S. ( 2012 ). Detecting causality in complex ecosystems. Science, 338 ( 6106 ), 496 – 500. https://doi.org/10.1126/science.1227079 | |
dc.identifier.citedreference | Tang, Q., Golaz, J.-C., Van Roekel, L. P., Taylor, M. A., Lin, W., Hillman, B. R., et al. ( 2022 ). The fully coupled regionally refined model of E3SM version 2: Overview of the atmosphere, land, and river. Geoscientific Model Development Discussions, 1 – 64. https://doi.org/10.5194/gmd-2022-262 | |
dc.identifier.citedreference | Tang, Q., Klein, S. A., Xie, S., Lin, W., Golaz, J.-C., Roesler, E. L., et al. ( 2019 ). Regionally refined test bed in E3SM atmosphere model version 1 (EAMV1) and applications for high-resolution modeling. Geoscientific Model Development, 12 ( 7 ), 2679 – 2706. https://doi.org/10.5194/gmd-12-2679-2019 | |
dc.identifier.citedreference | Tarouilly, E., Li, D., & Lettenmaier, D. P. ( 2021 ). Western U.S. Superfloods in the recent instrumental record. Water Resources Research, 57 ( 9 ), e2020WR029287. https://doi.org/10.1029/2020WR029287 | |
dc.identifier.citedreference | The NCAR Command Language (Version 6.6.2). ( 2022 ). The NCAR command language (version 6.6.2). UCAR/NCAR/CISL/TDD. https://doi.org/10.5065/D6WD3XH5 | |
dc.identifier.citedreference | Trenberth, E., Berry, C., & Buja, E. ( 1993 ). Vertical interpolation and truncation of model-coordinate data. https://doi.org/10.5065/D6HX19NH | |
dc.identifier.citedreference | Ullrich, P. A. ( 2014 ). Understanding the treatment of waves in atmospheric models. Part 1: The shortest resolved waves of the 1D linearized shallow-water equations. Quarterly Journal of the Royal Meteorological Society, 140 ( 682 ), 1426 – 1440. https://doi.org/10.1002/qj.2226 | |
dc.identifier.citedreference | Ullrich, P. A., Devendran, D., & Johansen, H. ( 2016 ). Arbitrary-order conservative and consistent remapping and a theory of linear maps: Part II. Monthly Weather Review, 144 ( 4 ), 1529 – 1549. https://doi.org/10.1175/mwr-d-15-0301.1 | |
dc.identifier.citedreference | Ullrich, P. A., & Taylor, M. A. ( 2015 ). Arbitrary-order conservative and consistent remapping and a theory of linear maps: Part I. Monthly Weather Review, 143 ( 6 ), 2419 – 2440. https://doi.org/10.1175/mwr-d-14-00343.1 | |
dc.identifier.citedreference | Ullrich, P. A., & Zarzycki, C. M. ( 2017 ). TempestExtremes: A framework for scale-insensitive pointwise feature tracking on unstructured grids. Geoscientific Model Development, 10 ( 3 ), 1069 – 1090. https://doi.org/10.5194/gmd-10-1069-2017 | |
dc.identifier.citedreference | Uppala, S. M., Kållberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., et al. ( 2005 ). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131 ( 612 ), 2961 – 3012. https://doi.org/10.1256/qj.04.176 | |
dc.identifier.citedreference | Wehner, M., Gleckler, P., & Lee, J. ( 2020 ). Characterization of long period return values of extreme daily temperature and precipitation in the CMIP6 models: Part 1, model evaluation. Weather and Climate Extremes, 30, 100283. https://doi.org/10.1016/j.wace.2020.100283 | |
dc.identifier.citedreference | Wehner, M., Lee, J., Risser, M., Ullrich, P., Gleckler, P., & Collins, W. D. ( 2021 ). Evaluation of extreme sub-daily precipitation in high-resolution global climate model simulations. Philosophical Transactions of the Royal Society A, 379 ( 2195 ), 20190545. https://doi.org/10.1098/rsta.2019.0545 | |
dc.identifier.citedreference | Wehner, M. F., Reed, K. A., Li, F., Prabhat, Bacmeister, J., Chen, C.-T., et al. ( 2014 ). The effect of horizontal resolution on simulation quality in the community atmospheric model, CAM5.1. Journal of Advances in Modeling Earth Systems, 6 ( 4 ), 980 – 997. https://doi.org/10.1002/2013MS000276 | |
dc.identifier.citedreference | Wehner, M. F., Zarzycki, C. M., & Patricola, C. M. ( 2019 ). Estimating the human influence on tropical cyclone intensity as the climate changes. In J. Collins & K. J. Walsh (Eds.), Hurricane risk (pp. 235 – 260 ). Springer. | |
dc.identifier.citedreference | Whipple, A. A., & Viers, J. H. ( 2019 ). Coupling landscapes and river flows to restore highly modified rivers. Water Resources Research, 55 ( 6 ), 4512 – 4532. https://doi.org/10.1029/2018WR022783 | |
dc.identifier.citedreference | Whipple, A. A., Viers, J. H., & Dahlke, H. E. ( 2017 ). Flood regime typology for floodplain ecosystem management as applied to the unregulated Cosumnes River of California, United States. Ecohydrology, 10 ( 5 ), e1817. https://doi.org/10.1002/eco.1817 | |
dc.identifier.citedreference | Wing, O. E., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A. M., et al. ( 2022 ). Inequitable patterns of US flood risk in the Anthropocene. Nature Climate Change, 12 ( 2 ), 156 – 162. https://doi.org/10.1038/s41558-021-01265-6 | |
dc.identifier.citedreference | Xu, Z., Di Vittorio, A., Zhang, J., Rhoades, A., Xin, X., Xu, H., & Xiao, C. ( 2021 ). Evaluating variable-resolution CESM over China and Western United States for use in water-energy nexus and impacts modeling. Journal of Geophysical Research: Atmospheres, 126 ( 15 ), e2020JD034361. https://doi.org/10.1029/2020JD034361 | |
dc.identifier.citedreference | Xu, Z., Rhoades, A. M., Johansen, H., Ullrich, P. A., & Collins, W. D. ( 2018 ). An intercomparison of GCM and RCM dynamical downscaling for characterizing the hydroclimatology of California and Nevada. Journal of Hydrometeorology, 19 ( 9 ), 1485 – 1506. https://doi.org/10.1175/JHM-D-17-0181.1 | |
dc.identifier.citedreference | Yang, K., Rittger, K., Musselman, K. N., Bair, E. H., Dozier, J., Margulis, S. A., et al. ( 2023 ). Intercomparison of snow water equivalent products in the Sierra Nevada California using airborne snow observatory data and ground observations. Frontiers in Earth Science, 11. https://doi.org/10.3389/feart.2023.1106621 | |
dc.identifier.citedreference | Yang, Q., Leung, L. R., Lu, J., Lin, Y.-L., Hagos, S., Sakaguchi, K., & Gao, Y. ( 2017 ). Exploring the effects of a nonhydrostatic dynamical core in high-resolution aquaplanet simulations. Journal of Geophysical Research: Atmospheres, 122 ( 6 ), 3245 – 3265. https://doi.org/10.1002/2016JD025287 | |
dc.identifier.citedreference | Zarzycki, C. M., Jablonowski, C., & Taylor, M. A. ( 2014 ). Using variable-resolution meshes to model tropical cyclones in the community atmosphere model. Monthly Weather Review, 142 ( 3 ), 1221 – 1239. https://doi.org/10.1175/MWR-D-13-00179.1 | |
dc.identifier.citedreference | Zarzycki, C. M., Jablonowski, C., Thatcher, D. R., & Taylor, M. A. ( 2015 ). Effects of localized grid refinement on the general circulation and climatology in the community atmosphere model. Journal of Climate, 28 ( 7 ), 2777 – 2803. https://doi.org/10.1175/JCLI-D-14-00599.1 | |
dc.identifier.citedreference | Zarzycki, C. M., & Ullrich, P. A. ( 2017 ). Assessing sensitivities in algorithmic detection of tropical cyclones in climate data. Geophysical Research Letters, 44 ( 2 ), 1141 – 1149. https://doi.org/10.1002/2016GL071606 | |
dc.identifier.citedreference | Zhou, Y., O’Brien, T. A., Ullrich, P. A., Collins, W. D., Patricola, C. M., & Rhoades, A. M. ( 2021 ). Uncertainties in atmospheric river lifecycles by detection algorithms: Climatology and variability. Journal of Geophysical Research: Atmospheres, 126 ( 8 ), e2020JD033711. https://doi.org/10.1029/2020JD033711 | |
dc.identifier.citedreference | AghaKouchak, A., Chiang, F., Huning, L. S., Love, C. A., Mallakpour, I., Mazdiyasni, O., et al. ( 2020 ). Climate extremes and compound hazards in a warming world. Annual Review of Earth and Planetary Sciences, 48 ( 1 ), 519 – 548. https://doi.org/10.1146/annurev-earth-071719-055228 | |
dc.identifier.citedreference | Bambach, N. E., Rhoades, A. M., Hatchett, B. J., Jones, A. D., Ullrich, P. A., & Zarzycki, C. M. ( 2021 ). Projecting climate change in South America using variable-resolution community Earth system model: An application to Chile. International Journal of Climatology, 42 ( 4 ), 1 – 29. https://doi.org/10.1002/joc.7379 | |
dc.identifier.citedreference | Bukovsky, M. S., Gutowski, W., Mearns, L. O., Paquin, D., & Pryor, S. C. ( 2023 ). Climate storylines. Bulletin of the American Meteorological Society, 104 ( 1 ), E96 – E98. https://doi.org/10.1175/BAMS-D-22-0224.1 | |
dc.identifier.citedreference | Cobb, A., Michaelis, A., Iacobellis, S., Ralph, F. M., & Monache, L. D. ( 2021 ). Atmospheric river sectors: Definition and characteristics observed using dropsondes from 2014–20 CalWater and AR Recon. Monthly Weather Review, 149 ( 3 ), 623 – 644. https://doi.org/10.1175/MWR-D-20-0177.1 | |
dc.identifier.citedreference | Collier, N., Hoffman, F. M., Lawrence, D. M., Keppel-Aleks, G., Koven, C. D., Riley, W. J., et al. ( 2018 ). The international land model benchmarking (ILAMB) system: Design, theory, and implementation. Journal of Advances in Modeling Earth Systems, 10 ( 11 ), 2731 – 2754. https://doi.org/10.1029/2018MS001354 | |
dc.identifier.citedreference | Collow, A. B. M., Shields, C. A., Guan, B., Kim, S., Lora, J. M., McClenny, E. E., et al. ( 2022 ). An overview of ARTMIP’s tier 2 reanalysis intercomparison: Uncertainty in the detection of atmospheric rivers and their associated precipitation. Journal of Geophysical Research: Atmospheres, 127 ( 8 ), e2021JD036155. https://doi.org/10.1029/2021JD036155 | |
dc.identifier.citedreference | Copernicus Climate Change Service Climate Data Store (CDS). ( 2017 ). Copernicus climate change service (C3S): ERA5: Fifth generation of ECMWF atmospheric reanalyzes of the global climate. Retrieved from https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview | |
dc.identifier.citedreference | Corringham, T. W., McCarthy, J., Shulgina, T., Gershunov, A., Cayan, D. R., & Ralph, F. M. ( 2022 ). Climate change contributions to future atmospheric river flood damages in the western United States. Scientific Reports, 12 ( 1 ), 1 – 9. https://doi.org/10.1038/s41598-022-15474-2 | |
dc.identifier.citedreference | Corringham, T. W., Ralph, F. M., Gershunov, A., Cayan, D. R., & Talbot, C. A. ( 2019 ). Atmospheric rivers drive flood damages in the western United States. Science Advances, 5 ( 12 ). https://doi.org/10.1126/sciadv.aax4631 | |
dc.identifier.citedreference | Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., et al. ( 2008 ). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. International Journal of Climatology, 28 ( 15 ), 2031 – 2064. https://doi.org/10.1002/joc.1688 | |
dc.identifier.citedreference | Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., et al. ( 2020 ). The community Earth system model version 2 (CESM2). Journal of Advances in Modeling Earth Systems, 12 ( 2 ), e2019MS001916. https://doi.org/10.1029/2019MS001916 | |
dc.identifier.citedreference | DeFlorio, M. J., Waliser, D. E., Guan, B., Ralph, F. M., & Vitart, F. ( 2019 ). Global evaluation of atmospheric river subseasonal prediction skill. Climate Dynamics, 52 ( 5–6 ), 3039 – 3060. https://doi.org/10.1007/s00382-018-4309-x | |
dc.identifier.citedreference | Dettinger, M. D., Martin Ralph, F., Hughes, M., Das, T., Neiman, P., Cox, D., et al. ( 2012 ). Design and quantification of an extreme winter storm scenario for emergency preparedness and planning exercises in California. Natural Hazards, 60 ( 3 ), 1085 – 1111. https://doi.org/10.1007/s11069-011-9894-5 | |
dc.identifier.citedreference | Fang, Y., Liu, Y., & Margulis, S. A. ( 2022 ). A western United States snow reanalysis dataset over the Landsat era from water years 1985 to 2021. Scientific Data, 9 ( 1 ), 1 – 17. https://doi.org/10.1038/s41597-022-01768-7 | |
dc.identifier.citedreference | Fasullo, J. T. ( 2020 ). Evaluating simulated climate patterns from the CMIP archives using satellite and reanalysis datasets using the climate model assessment tool (CMATv1). Geoscientific Model Development, 13 ( 8 ), 3627 – 3642. https://doi.org/10.5194/gmd-13-3627-2020 | |
dc.identifier.citedreference | Fish, M. A., Wilson, A. M., & Ralph, F. M. ( 2019 ). Atmospheric river families: Definition and associated synoptic conditions. Journal of Hydrometeorology, 20 ( 10 ), 2091 – 2108. https://doi.org/10.1175/JHM-D-18-0217.1 | |
dc.identifier.citedreference | Galewsky, J., & Sobel, A. ( 2005 ). Moist dynamics and orographic precipitation in northern and central California during the New Year’s flood of 1997. Monthly Weather Review, 133 ( 6 ), 1594 – 1612. https://doi.org/10.1175/MWR2943.1 | |
dc.identifier.citedreference | Gates, W. L., Boyle, J. S., Covey, C., Dease, C. G., Doutriaux, C. M., Drach, R. S., et al. ( 1999 ). An overview of the results of the atmospheric model intercomparison project (AMIP I). Bulletin of the American Meteorological Society, 80 ( 1 ), 29 – 56. https://doi.org/10.1175/1520-0477(1999)080〈0029:AOOTRO〉2.0.CO;2 | |
dc.identifier.citedreference | Gershunov, A., Shulgina, T., Clemesha, R. E., Guirguis, K., Pierce, D. W., Dettinger, M. D., et al. ( 2019 ). Precipitation regime change in western North America: The role of atmospheric rivers. Scientific Reports, 9 ( 1 ), 1 – 11. https://doi.org/10.1038/s41598-019-46169-w | |
dc.identifier.citedreference | Gettelman, A., Morrison, H., Santos, S., Bogenschutz, P., & Caldwell, P. M. ( 2015 ). Advanced two-moment bulk microphysics for global models. PART II: Global model solutions and aerosol–cloud interactions. Journal of Climate, 28 ( 3 ), 1288 – 1307. https://doi.org/10.1175/JCLI-D-14-00103.1 | |
dc.identifier.citedreference | Golaz, J.-C., Van Roekel, L. P., Zheng, X., Roberts, A. F., Wolfe, J. D., Lin, W., et al. ( 2022 ). The DOE E3SM model version 2: Overview of the physical model and initial model evaluation. Journal of Advances in Modeling Earth Systems, 14 ( 12 ), e2022MS003156. https://doi.org/10.1029/2022MS003156 | |
dc.identifier.citedreference | Guan, B., & Waliser, D. E. ( 2017 ). Atmospheric rivers in 20 year weather and climate simulations: A multimodel, global evaluation. Journal of Geophysical Research: Atmospheres, 122 ( 11 ), 5556 – 5581. https://doi.org/10.1002/2016JD026174 | |
dc.identifier.citedreference | Guan, B., Waliser, D. E., Ralph, F. M., Fetzer, E. J., & Neiman, P. J. ( 2016 ). Hydrometeorological characteristics of rain-on-snow events associated with atmospheric rivers. Geophysical Research Letters, 43 ( 6 ), 2964 – 2973. https://doi.org/10.1002/2016GL067978 | |
dc.identifier.citedreference | Gutowski, W. J., Ullrich, P. A., Hall, A., Leung, L. R., O’Brien, T. A., Patricola, C. M., et al. ( 2020 ). The ongoing need for high-resolution regional climate models: Process understanding and stakeholder information. Bulletin of the American Meteorological Society, 101 ( 5 ), E664 – E683. https://doi.org/10.1175/BAMS-D-19-0113.1 | |
dc.identifier.citedreference | Haiden, T., Janousek, M., Vitart, F., Ben-Bouallegue, Z., Ferranti, L., Prates, C., & Richardson, D. ( 2021 ). Evaluation of ECMWF forecasts, including the 2020 upgrade. ECMWF technical Memoranda(880). https://doi.org/10.21957/6njp8byz4 | |
dc.identifier.citedreference | Hanak, E., & Lund, J. R. ( 2012 ). Adapting California’s water management to climate change. Climatic Change, 111 ( 1 ), 17 – 44. https://doi.org/10.1007/s10584-011-0241-3 | |
dc.identifier.citedreference | Harrop, B. E., Balaguru, K., Golaz, J.-C., Leung, L., Mahajan, S., Rhoades, A., et al. ( 2022 ). Evaluating the water cycle over CONUS at the watershed scale for the Energy Exascale Earth System Model version 1 (E3SMv1) across resolutions. ESS Open Archive. https://doi.org/10.1002/essoar.10512849.1 | |
dc.identifier.citedreference | Hatchett, B. J., & McEvoy, D. J. ( 2018 ). Exploring the origins of snow drought in the northern Sierra Nevada, California. Earth Interactions, 22 ( 2 ), 1 – 13. https://doi.org/10.1175/EI-D-17-0027.1 | |
dc.identifier.citedreference | Heggli, A., Hatchett, B., Schwartz, A., Bardsley, T., & Hand, E. ( 2022 ). Toward snowpack runoff decision support. iScience, 25 ( 5 ), 104240. https://doi.org/10.1016/j.isci.2022.104240 | |
dc.identifier.citedreference | Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. ( 2020 ). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146 ( 730 ), 1999 – 2049. https://doi.org/10.1002/qj.3803 | |
dc.identifier.citedreference | Huang, H., Patricola, C. M., Bercos-Hickey, E., Zhou, Y., Rhoades, A., Risser, M. D., & Collins, W. D. ( 2021 ). Sources of subseasonal-to-seasonal predictability of atmospheric rivers and precipitation in the western United States. Journal of Geophysical Research: Atmospheres, 126 ( 6 ), e2020JD034053. https://doi.org/10.1029/2020JD034053 | |
dc.identifier.citedreference | Huang, X., & Swain, D. L. ( 2022 ). Climate change is increasing the risk of a California megaflood. Science Advances, 8 ( 32 ), eabq0995. https://doi.org/10.1126/sciadv.abq0995 | |
dc.identifier.citedreference | Hughes, M., Neiman, P. J., Sukovich, E., & Ralph, M. ( 2012 ). Representation of the Sierra Barrier Jet in 11 years of a high-resolution dynamical reanalysis downscaling compared with long-term wind profiler observations. Journal of Geophysical Research, 117 ( D18 ), D18116. https://doi.org/10.1029/2012JD017869 | |
dc.identifier.citedreference | Ivancic, T. J., & Shaw, S. B. ( 2015 ). Examining why trends in very heavy precipitation should not be mistaken for trends in very high river discharge. Climatic Change, 133 ( 4 ), 681 – 693. https://doi.org/10.1007/s10584-015-1476-1 | |
dc.identifier.citedreference | Jagannathan, K., Jones, A. D., & Ray, I. ( 2021 ). The making of a metric: Co-Producing decision-relevant climate science. Bulletin of the American Meteorological Society, 102 ( 8 ), E1579 – E1590. https://doi.org/10.1175/BAMS-D-19-0296.1 | |
dc.identifier.citedreference | Jones, A. D., Rastogi, D., Vahmani, P., Stansfield, A., Reed, K., Thurber, T., et al. ( 2022 ). IM3/HyperFACETS thermodynamic global warming (TGW) simulation datasets (v1.0.0) [Dataset]. MSD-LIVE Data Repository. https://doi.org/10.57931/1885756 | |
dc.identifier.citedreference | Jones, P. W. ( 1999 ). First- and second-order conservative remapping schemes for grids in spherical coordinates. Monthly Weather Review, 127 ( 9 ), 2204 – 2210. https://doi.org/10.1175/1520-0493(1999)127〈2204:FASOCR〉2.0.CO;2 | |
dc.identifier.citedreference | Kattelmann, R. ( 1997 ). Flooding from rain-on-snow events in the Sierra Nevada. IAHS Publications-Series of Proceedings and Reports-Intern Assoc Hydrological Sciences, 239, 59 – 66. | |
dc.identifier.citedreference | Kingsmill, D. E., Neiman, P. J., Moore, B. J., Hughes, M., Yuter, S. E., & Ralph, F. M. ( 2013 ). Kinematic and thermodynamic structures of sierra barrier jets and overrunning atmospheric rivers during a landfalling winter storm in northern California. Monthly Weather Review, 141 ( 6 ), 2015 – 2036. https://doi.org/10.1175/MWR-D-12-00277.1 | |
dc.identifier.citedreference | Klaver, R., Haarsma, R., Vidale, P. L., & Hazeleger, W. ( 2020 ). Effective resolution in high resolution global atmospheric models for climate studies. Atmospheric Science Letters, 21 ( 4 ), e952. https://doi.org/10.1002/asl.952 | |
dc.identifier.citedreference | La Follette, P. T., Teuling, A. J., Addor, N., Clark, M., Jansen, K., & Melsen, L. A. ( 2021 ). Numerical daemons of hydrological models are summoned by extreme precipitation. Hydrology and Earth System Sciences, 25 ( 10 ), 5425 – 5446. https://doi.org/10.5194/hess-25-5425-2021 | |
dc.identifier.citedreference | Lauritzen, P. H., Bacmeister, J. T., Callaghan, P. F., & Taylor, M. A. ( 2015 ). NCAR_topo (v1.0): NCAR global model topography generation software for unstructured grids. Geoscientific Model Development, 8 ( 12 ), 3975 – 3986. https://doi.org/10.5194/gmd-8-3975-2015 | |
dc.identifier.citedreference | Lavers, D. A., Waliser, D. E., Ralph, F. M., & Dettinger, M. D. ( 2016 ). Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophysical Research Letters, 43 ( 5 ), 2275 – 2282. https://doi.org/10.1002/2016GL067765 | |
dc.identifier.citedreference | Lehner, F., Deser, C., Maher, N., Marotzke, J., Fischer, E. M., Brunner, L., et al. ( 2020 ). Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth System Dynamics, 11 ( 2 ), 491 – 508. https://doi.org/10.5194/esd-11-491-2020 | |
dc.identifier.citedreference | Lemos, M. C., Arnott, J. C., Ardoin, N. M., Baja, K., Bednarek, A. T., Dewulf, A., et al. ( 2018 ). To co-produce or not to co-produce. Nature Sustainability, 1 ( 12 ), 722 – 724. https://doi.org/10.1038/s41893-018-0191-0 | |
dc.identifier.citedreference | Lemos, M. C., Kirchhoff, C. J., & Ramprasad, V. ( 2012 ). Narrowing the climate information usability gap. Nature Climate Change, 2 ( 11 ), 789 – 794. https://doi.org/10.1038/nclimate1614 | |
dc.identifier.citedreference | L’Heureux, M. L., Tippett, M. K., & Becker, E. J. ( 2021 ). Sources of subseasonal skill and predictability in wintertime California precipitation forecasts. Weather and Forecasting, 36 ( 5 ), 1815 – 1826. https://doi.org/10.1175/WAF-D-21-0061.1 | |
dc.identifier.citedreference | Liu, W., Ullrich, P. A., Guba, O., Caldwell, P. M., & Keen, N. D. ( 2022 ). An assessment of nonhydrostatic and hydrostatic dynamical cores at seasonal time scales in the Energy Exascale Earth System Model (E3SM). Journal of Advances in Modeling Earth Systems, 14 ( 2 ), e2021MS002805. https://doi.org/10.1029/2021MS002805 | |
dc.identifier.citedreference | Liu, W., Ullrich, P. A., Li, J., Zarzycki, C., Caldwell, P. M., Leung, L. R., & Qian, Y. ( 2023 ). The June 2012 North American Derecho: A testbed for evaluating regional and global climate modeling systems at cloud-resolving scales. Journal of Advances in Modeling Earth Systems, 15 ( 4 ), e2022MS003358. https://doi.org/10.1029/2022MS003358 | |
dc.identifier.citedreference | Livneh, B., Bohn, T. J., Pierce, D. W., Munoz-Arriola, F., Nijssen, B., Vose, R., et al. ( 2015 ). A spatially comprehensive, hydrometeorological data set for Mexico, the U.S., and Southern Canada 1950–2013. Scientific Data, 2 ( 1 ), 150042. https://doi.org/10.1038/sdata.2015.42 | |
dc.identifier.citedreference | Lott, N., Sittel, M. C., & Ross, D. ( 1997 ). The winter of ’96-’97: West coast flooding (Vol. 97–01, pp. 1 – 22 ). National Climatic Data Center technical report. Retrieved from https://repository.library.noaa.gov/view/noaa/13812 | |
dc.identifier.citedreference | Lundquist, J. D., Hughes, M., Gutmann, E., & Kapnick, S. ( 2019 ). Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bulletin of the American Meteorological Society, 100 ( 12 ), 2473 – 2490. https://doi.org/10.1175/BAMS-D-19-0001.1 | |
dc.identifier.citedreference | Lundquist, J. D., Hughes, M., Henn, B., Gutmann, E. D., Livneh, B., Dozier, J., & Neiman, P. ( 2015 ). High-elevation precipitation patterns: Using snow measurements to assess daily gridded datasets across the Sierra Nevada, California. Journal of Hydrometeorology, 16 ( 4 ), 1773 – 1792. https://doi.org/10.1175/JHM-D-15-0019.1 | |
dc.identifier.citedreference | Maina, F. Z., Rhoades, A., Siirila-Woodburn, E. R., & Dennedy-Frank, P.-J. ( 2022 ). Projecting end-of-century climate extremes and their impacts on the hydrology of a representative California watershed. Hydrology and Earth System Sciences, 26 ( 13 ), 3589 – 3609. https://doi.org/10.5194/hess-26-3589-2022 | |
dc.identifier.citedreference | Mann, H. B. ( 1945 ). Nonparametric tests against trend. Econometrica, 13 ( 3 ), 245 – 259. https://doi.org/10.2307/1907187 | |
dc.identifier.citedreference | Margulis, S. A., Cortés, G., Girotto, M., & Durand, M. ( 2016 ). A Landsat-era Sierra Nevada snow reanalysis (1985–2015). Journal of Hydrometeorology, 17 ( 4 ), 1203 – 1221. https://doi.org/10.1175/JHM-D-15-0177.1 | |
dc.identifier.citedreference | Murphy, A. H. ( 1993 ). What is a good forecast? An essay on the nature of goodness in weather forecasting. Weather and Forecasting, 8 ( 2 ), 281 – 293. https://doi.org/10.1175/1520-0434(1993)008〈0281:WIAGFA〉2.0.CO;2 | |
dc.identifier.citedreference | Neiman, P. J., Hughes, M., Moore, B. J., Ralph, F. M., & Sukovich, E. M. ( 2013 ). Sierra barrier jets, atmospheric rivers, and precipitation characteristics in northern California: A composite perspective based on a network of wind profilers. Monthly Weather Review, 141 ( 12 ), 4211 – 4233. https://doi.org/10.1175/MWR-D-13-00112.1 | |
dc.identifier.citedreference | Neiman, P. J., Sukovich, E. M., Ralph, F. M., & Hughes, M. ( 2010 ). A seven-year wind profiler–based climatology of the windward barrier jet along California’s northern Sierra Nevada. Monthly Weather Review, 138 ( 4 ), 1206 – 1233. https://doi.org/10.1175/2009MWR3170.1 | |
dc.identifier.citedreference | Newman, A. J., Clark, M. P., Craig, J., Nijssen, B., Wood, A., Gutmann, E., et al. ( 2015 ). Gridded ensemble precipitation and temperature estimates for the contiguous United States. Journal of Hydrometeorology, 16 ( 6 ), 2481 – 2500. https://doi.org/10.1175/JHM-D-15-0026.1 | |
dc.identifier.citedreference | O’Brien, T. A., Wehner, M. F., Payne, A. E., Shields, C. A., Rutz, J. J., Leung, L.-R., et al. ( 2022 ). Increases in future AR count and size: Overview of the ARTMIP Tier 2 CMIP5/6 experiment. Journal of Geophysical Research: Atmospheres, 127 ( 6 ), e2021JD036013. https://doi.org/10.1029/2021JD036013 | |
dc.identifier.citedreference | Ombadi, M., Nguyen, P., Sorooshian, S., & lin Hsu, K. ( 2020 ). Evaluation of methods for causal discovery in hydrometeorological systems. Water Resources Research, 56 ( 7 ). https://doi.org/10.1029/2020wr027251 | |
dc.identifier.citedreference | Ombadi, M., Nguyen, P., Sorooshian, S., & lin Hsu, K. ( 2021 ). How much information on precipitation is contained in satellite infrared imagery? Atmospheric Research, 256, 105578. https://doi.org/10.1016/j.atmosres.2021.105578 | |
dc.identifier.citedreference | Ombadi, M., Risser, M. D., Rhoades, A. M., & Varadharajan, C. ( 2023 ). A warming-induced reduction in snow fraction amplifies rainfall extremes. Nature, 619 ( 7969 ), 1 – 6. https://doi.org/10.1038/s41586-023-06092-7 | |
dc.identifier.citedreference | Osterhuber, R., & Schwartz, A. ( 2021 ). Snowpack, precipitation, and temperature measurements at the Central Sierra Snow Laboratory for water years 1971 to 2019. Dryad, Dataset. https://doi.org/10.6078/D1941T | |
dc.identifier.citedreference | Painter, T. H., Berisford, D. F., Boardman, J. W., Bormann, K. J., Deems, J. S., Gehrke, F., et al. ( 2016 ). The Airborne Snow Observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sensing of Environment, 184, 139 – 152. https://doi.org/10.1016/j.rse.2016.06.018 | |
dc.identifier.citedreference | Patricola, C. M., Wehner, M. F., Bercos-Hickey, E., Maciel, F. V., May, C., Mak, M., et al. ( 2022 ). Future changes in extreme precipitation over the San Francisco bay area: Dependence on atmospheric river and extratropical cyclone events. Weather and Climate Extremes, 36, 100440. https://doi.org/10.1016/j.wace.2022.100440 | |
dc.identifier.citedreference | Payne, A. E., Demory, M.-E., Leung, L. R., Ramos, A. M., Shields, C. A., Rutz, J. J., et al. ( 2020 ). Responses and impacts of atmospheric rivers to climate change. Nature Reviews Earth & Environment, 1 ( 3 ), 143 – 157. https://doi.org/10.1038/s43017-020-0030-5 | |
dc.identifier.citedreference | Pierce, D. W., Su, L., Cayan, D. R., Risser, M. D., Livneh, B., & Lettenmaier, D. P. ( 2021 ). An extreme-preserving long-term gridded daily precipitation dataset for the conterminous United States. Journal of Hydrometeorology, 22 ( 7 ), 1883 – 1895. https://doi.org/10.1175/JHM-D-20-0212.1 | |
dc.identifier.citedreference | Porter, K., Wein, A., Alpers, C. N., Baez, A., Barnard, P. L., Carter, J., et al. ( 2011 ). Overview of the ARkStorm scenario (Tech. Rep.). US Geological Survey. Retrieved from https://pubs.er.usgs.gov/publication/ofr20101312 | |
dc.identifier.citedreference | Ralph, F. M., Rutz, J. J., Cordeira, J. M., Dettinger, M., Anderson, M., Reynolds, D., et al. ( 2019 ). A scale to characterize the strength and impacts of atmospheric rivers. Bulletin of the American Meteorological Society, 100 ( 2 ), 269 – 289. https://doi.org/10.1175/BAMS-D-18-0023.1 | |
dc.identifier.citedreference | Rauscher, S. A., & Ringler, T. D. ( 2014 ). Impact of variable-resolution meshes on midlatitude baroclinic eddies using CAM-MPAS-A. Monthly Weather Review, 142 ( 11 ), 4256 – 4268. https://doi.org/10.1175/MWR-D-13-00366.1 | |
dc.identifier.citedreference | Rauscher, S. A., Ringler, T. D., Skamarock, W. C., & Mirin, A. A. ( 2013 ). Exploring a global multiresolution modeling approach using aquaplanet simulations. Journal of Climate, 26 ( 8 ), 2432 – 2452. https://doi.org/10.1175/JCLI-D-12-00154.1 | |
dc.identifier.citedreference | Raymond, C., Horton, R. M., Zscheischler, J., Martius, O., AghaKouchak, A., Balch, J., et al. ( 2020 ). Understanding and managing connected extreme events. Nature Climate Change, 10 ( 7 ), 611 – 621. https://doi.org/10.1038/s41558-020-0790-4 | |
dc.identifier.citedreference | Reid, R. L. ( 2015 ). Engineering for every drop. Civil Engineering Magazine, 85 ( 10 ), 46 – 55. https://doi.org/10.1061/ciegag.0001044 | |
dc.identifier.citedreference | Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., & Schlax, M. G. ( 2007 ). Daily high-resolution-blended analyses for sea surface temperature. Journal of Climate, 20 ( 22 ), 5473 – 5496. https://doi.org/10.1175/2007JCLI1824.1 | |
dc.identifier.citedreference | Rhoades, A. M., Huang, X., Ullrich, P. A., & Zarzycki, C. M. ( 2016 ). Characterizing sierra Nevada snowpack using variable-resolution CESM. Journal of Applied Meteorology and Climatology, 55 ( 1 ), 173 – 196. https://doi.org/10.1175/JAMC-D-15-0156.1 | |
dc.identifier.citedreference | Rhoades, A. M., Jones, A. D., O’Brien, T. A., O’Brien, J. P., Ullrich, P. A., & Zarzycki, C. M. ( 2020 ). Influences of North Pacific ocean domain extent on the western U.S. Winter hydroclimatology in variable-resolution CESM. Journal of Geophysical Research: Atmospheres, 125 ( 14 ), e2019JD031977. https://doi.org/10.1029/2019JD031977 | |
dc.identifier.citedreference | Rhoades, A. M., Jones, A. D., Srivastava, A., Huang, H., O’Brien, T. A., Patricola, C. M., et al. ( 2020 ). The shifting scales of western U.S. landfalling atmospheric rivers under climate change. Geophysical Research Letters, 47 ( 17 ), e2020GL089096. https://doi.org/10.1029/2020GL089096 | |
dc.identifier.citedreference | Rhoades, A. M., Risser, M. D., Stone, D. A., Wehner, M. F., & Jones, A. D. ( 2021 ). Implications of warming on western United States landfalling atmospheric rivers and their flood damages. Weather and Climate Extremes, 32, 100326. https://doi.org/10.1016/j.wace.2021.100326 | |
dc.identifier.citedreference | Rhoades, A. M., Ullrich, P. A., Zarzycki, C. M., Johansen, H., Margulis, S. A., Morrison, H., et al. ( 2018 ). Sensitivity of mountain hydroclimate simulations in variable-resolution CESM to microphysics and horizontal resolution. Journal of Advances in Modeling Earth Systems, 10 ( 6 ), 1357 – 1380. https://doi.org/10.1029/2018MS001326 | |
dc.identifier.citedreference | Ricciotti, J. A., & Cordeira, J. M. ( 2022 ). Summarizing relationships among landfalling atmospheric rivers, integrated water vapor transport, and California watershed precipitation 1982–2019. Journal of Hydrometeorology, 23 ( 9 ), 1439 – 1454. https://doi.org/10.1175/JHM-D-21-0119.1 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.