Show simple item record

Uncovering and Experimental Realization of Multimodal 3D Topological Metamaterials for Low-Frequency and Multiband Elastic Wave Control

dc.contributor.authorDorin, Patrick
dc.contributor.authorKhan, Mustafa
dc.contributor.authorWang, K. W.
dc.date.accessioned2023-11-06T16:35:07Z
dc.date.available2024-11-06 11:35:05en
dc.date.available2023-11-06T16:35:07Z
dc.date.issued2023-10
dc.identifier.citationDorin, Patrick; Khan, Mustafa; Wang, K. W. (2023). "Uncovering and Experimental Realization of Multimodal 3D Topological Metamaterials for Low-Frequency and Multiband Elastic Wave Control." Advanced Science 10(30): n/a-n/a.
dc.identifier.issn2198-3844
dc.identifier.issn2198-3844
dc.identifier.urihttps://hdl.handle.net/2027.42/191374
dc.description.abstractTopological mechanical metamaterials unlock confined and robust elastic wave control. Recent breakthroughs have precipitated the development of 3D topological metamaterials, which facilitate extraordinary wave manipulation along 2D planar and layer-dependent waveguides. The 3D topological metamaterials studied thus far are constrained to function in single-frequency bandwidths that are typically in a high-frequency regime, and a comprehensive experimental investigation remains elusive. In this paper, these research gaps are addressed and the state of the art is advanced through the synthesis and experimental realization of a 3D topological metamaterial that exploits multimodal local resonance to enable low-frequency elastic wave control over multiple distinct frequency bands. The proposed metamaterial is geometrically configured to create multimodal local resonators whose frequency characteristics govern the emergence of four unique low-frequency topological states. Numerical simulations uncover how these topological states can be employed to achieve polarization-, frequency-, and layer-dependent wave manipulation in 3D structures. An experimental study results in the attainment of complete wave fields that illustrate 2D topological waveguides and multi-polarized wave control in a physical testbed. The outcomes from this work provide insight that will aid future research on 3D topological mechanical metamaterials and reveal the applicability of the proposed metamaterial for wave control applications.This paper involves the synthesis of a 3D topological metamaterial that harnesses multimodal local resonance to enable multiband and low-frequency elastic wave control. Theoretical and experimental investigations uncover a methodology to achieve polarization-, frequency-, and layer-dependent waveguides in 3D structures. The reported outcomes provide insight that will encourage future research on 3D mechanical devices for wave and vibration manipulation.
dc.publisherElsevier
dc.publisherWiley Periodicals, Inc.
dc.subject.othertopological materials
dc.subject.otherwave control
dc.subject.otherresonance
dc.subject.othermultiband waveguides
dc.subject.otherelastic metamaterial
dc.titleUncovering and Experimental Realization of Multimodal 3D Topological Metamaterials for Low-Frequency and Multiband Elastic Wave Control
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191374/1/advs6436.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191374/2/advs6436-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191374/3/advs6436_am.pdf
dc.identifier.doi10.1002/advs.202304793
dc.identifier.sourceAdvanced Science
dc.identifier.citedreferenceH. H. Huang, C. T. Sun, New J. Phys. 2009, 11, 013003.
dc.identifier.citedreferenceT.-W. Liu, F. Semperlotti, Phys. Rev. Appl. 2018, 9, 014001.
dc.identifier.citedreferenceP. Dorin, K. W. Wang, Front. Mater. 2021, 7, 602996.
dc.identifier.citedreferenceM. Yan, W. Deng, X. Huang, Y. Wu, Y. Yang, J. Lu, F. Li, Z. Liu, Phys. Rev. Lett. 2021, 127, 136401.
dc.identifier.citedreferenceJ. Zhao, Q. Wang, X. Wang, W. Yuan, Y. Huang, S. Chen, A. Riaud, J. Zhou, Int. J. Mech. Sci. 2022, 227, 107460.
dc.identifier.citedreferenceY. Chen, F. Qian, L. Zuo, F. Scarpa, L. Wang, Extrem. Mech. Lett. 2017, 17, 24.
dc.identifier.citedreferenceV. Gorshkov, P. Sareh, N. Navadeh, V. Tereshchuk, A. S. Fallah, Mater. Des. 2021, 202, 109522.
dc.identifier.citedreferenceJ. Chen, K. F. Tong, A. Al-Armaghany, J. Wang, IEEE Antennas Wirel. Propag. Lett. 2016, 15, 406.
dc.identifier.citedreferenceH. Huang, Z. Tan, S. Huo, L. Feng, J. Chen, X. Han, Commun. Phys. 2020, 3, 46.
dc.identifier.citedreferenceC. Sugino, S. Leadenham, M. Ruzzene, A. Erturk, J. Appl. Phys. 2016, 120, 134501.
dc.identifier.citedreferenceR. K. Pal, M. Ruzzene, New J. Phys. 2017, 19, 025001.
dc.identifier.citedreferenceA. Ni, Z. Shi, Eng. Struct. 2023, 275, 115288.
dc.identifier.citedreferenceM. Murer, S. K. Guruva, G. Formica, W. Lacarbonara, J. Compos. Mater. 2023, 57, 783.
dc.identifier.citedreferenceD. Giannini, M. Schevenels, E. P. B. Reynders, J. Sound Vib. 2023, 547, 117453.
dc.identifier.citedreferenceD. Torrent, D. Mayou, J. Sánchez-Dehesa, Phys. Rev. B 2013, 87, 115143.
dc.identifier.citedreferenceD. Xiao, W. Yao, Q. Niu, Phys. Rev. Lett. 2007, 99, 236809.
dc.identifier.citedreferenceN. M. R. Peres, Rev. Mod. Phys. 2010, 82, 2673.
dc.identifier.citedreferenceA. Rycerz, J. Tworzydło, C. W. J. Beenakker, Nat. Phys. 2007, 3, 172.
dc.identifier.citedreferenceJ. Vila, R. K. Pal, M. Ruzzene, Phys. Rev. B 2017, 96, 134307.
dc.identifier.citedreferenceK. Qian, D. J. Apigo, C. Prodan, Y. Barlas, E. Prodan, Phys. Rev. B 2018, 98, 155138.
dc.identifier.citedreferenceB. H. Nguyen, X. Zhuang, H. S. Park, T. Rabczuk, J. Appl. Phys. 2019, 125, 095106.
dc.identifier.citedreferenceX. An, C. Lai, W. He, H. Fan, Extrem. Mech. Lett. 2019, 33, 100577.
dc.identifier.citedreferenceM. F. Ashby, H. Shercliff, D. Cebon, in Materials: Engineering, Science, Processing and Design, 4th ed., Butterworth-Heinemann, Oxford, UK 2019.
dc.identifier.citedreferenceX. Liu, G. Cai, K. W. Wang, J. Sound Vib. 2021, 492, 115819.
dc.identifier.citedreferenceA. Darabi, M. J. Leamy, J. Acoust. Soc. Am. 2019, 146, 773.
dc.identifier.citedreferenceM. Kim, Z. Jacob, J. Rho, Light Sci. Appl. 2020, 9, 130.
dc.identifier.citedreferenceH. Yasuda, P. R. Buskohl, A. Gillman, T. D. Murphey, S. Stepney, R. A. Vaia, J. R. Raney, Nature 2021, 598, 39.
dc.identifier.citedreferenceA. Nazir, O. Gokcekaya, K. M. Billah, O. Ertugrul, J. Jiang, J. Sun, S. Hussain, Mater. Des. 2023, 226, 111661.
dc.identifier.citedreferenceM. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 2010, 82, 3045.
dc.identifier.citedreferenceX. L. Qi, S. C. Zhang, Rev. Mod. Phys. 2011, 83, 1057.
dc.identifier.citedreferenceA. Kitaev, AIP Conf. Proc. 2009, 1134, 22.
dc.identifier.citedreferenceC. L. Kane, in Topological Band Theory and the ℤ2 Invariant, Vol. 6, Elsevier, Amsterdam 2013.
dc.identifier.citedreferenceH. Xue, Y. Yang, B. Zhang, Nat. Rev. Mater. 2022, 7, 974.
dc.identifier.citedreferenceG. Ma, M. Xiao, C. T. Chan, Nat. Rev. Phys. 2019, 1, 281.
dc.identifier.citedreferenceY. Liu, X. Chen, Y. Xu, Adv. Funct. Mater. 2020, 30, 1904784.
dc.identifier.citedreferenceS. Zheng, G. Duan, B. Xia, Appl. Sci. 1987, 12, 2022.
dc.identifier.citedreferenceS. D. Huber, Nat. Phys. 2016, 12, 621.
dc.identifier.citedreferenceZ. Wen, Y. Jin, P. Gao, X. Zhuang, T. Rabczuk, B. Djafari-Rouhani, Mech. Syst. Signal Proc. 2022, 162, 108047.
dc.identifier.citedreferenceC. Lan, G. Hu, L. Tang, Y. Yang, J. Appl. Phys. 2021, 129, 184502.
dc.identifier.citedreferenceG. J. Chaplain, J. M. De Ponti, G. Aguzzi, A. Colombi, R. V. Craster, Phys. Rev. Appl. 2020, 14, 054035.
dc.identifier.citedreferenceT. X. Ma, Q. S. Fan, C. Zhang, Y. S. Wang, Extrem. Mech. Lett. 2022, 50, 101578.
dc.identifier.citedreferenceX. Wu, Y. Jin, A. Khelif, X. Zhuang, T. Rabczuk, B. Djafari-Rouhani, Mech. Adv. Mater. Struct. 2022, 29, 4759.
dc.identifier.citedreferenceF. Zangeneh-Nejad, R. Fleury, Nat. Commun. 2019, 10, 2058.
dc.identifier.citedreferenceM. Yan, J. Lu, F. Li, W. Deng, X. Huang, J. Ma, Z. Liu, Nat. Mater. 2018, 17, 993.
dc.identifier.citedreferenceY. Wu, M. Yan, Z. K. Lin, H. X. Wang, F. Li, J. H. Jiang, Sci. Bull. 2021, 66, 1959.
dc.identifier.citedreferenceR. Chaunsali, E. Kim, A. Thakkar, P. G. Kevrekidis, J. Yang, Phys. Rev. Lett. 2017, 119, 024301.
dc.identifier.citedreferenceH. Chen, H. Nassar, G. L. Huang, J. Mech. Phys. Solids 2018, 117, 22.
dc.identifier.citedreferenceT.-W. Liu, F. Semperlotti, Adv. Mater. 2021, 33, 2005160.
dc.identifier.citedreferenceR. Süsstrunk, S. D. Huber, Science 2015, 349, 47.
dc.identifier.citedreferenceY. Guo, M. I. N. Rosa, M. Gupta, B. E. Dolan, B. Fields, L. Valdevit, M. Ruzzene, Adv. Funct. Mater. 2022, 32, 2204122.
dc.identifier.citedreferenceJ. Yin, M. Ruzzene, J. Wen, D. Yu, L. Cai, L. Yue, Sci. Rep. 2018, 8, 6806.
dc.identifier.citedreferenceL. M. Nash, D. Kleckner, A. Read, V. Vitelli, A. M. Turner, W. T. M. Irvine, Proc. Natl. Acad. 2015, 112, 14495.
dc.identifier.citedreferenceR. Chaunsali, C. W. Chen, J. Yang, Phys. Rev. B 2018, 97, 054307.
dc.identifier.citedreferenceS. H. Mousavi, A. B. Khanikaev, Z. Wang, Nat. Commun. 2015, 6, 8682.
dc.identifier.citedreferenceZ. Du, H. Chen, G. Huang, J. Mech. Phys. Solids 2020, 135, 103784.
dc.identifier.citedreferenceH. Zhu, T. W. Liu, F. Semperlotti, Phys. Rev. B 2018, 97, 174301.
dc.identifier.citedreferenceJ. Xu, Y. Zheng, T. Ma, H. Chen, B. Wu, J. Wang, S. Li, I. Kuznetsova, I. Nedospasov, J. Du, H. Shi, D. Chen, F. Sun, Phys. Rev. Appl. 2023, 19, 034062.
dc.identifier.citedreferenceJ. M. De Ponti, L. Iorio, G. J. Chaplain, A. Corigliano, R. V. Craster, R. Ardito, Phys. Rev. Appl. 2023, 19, 034079.
dc.identifier.citedreferenceS. Y. Huo, J.-J. Chen, H.-B. Huang, Y.-J. Wei, Z.-H. Tan, L.-Y. Feng, X.-P. Xie, Mech. Syst. Signal Proc. 2021, 154, 107543.
dc.identifier.citedreferenceS. Y. Huo, H. B. Huang, C. M. Fu, J. J. Chen, Phys. Sci. 2021, 96, 125714.
dc.identifier.citedreferenceX. Shi, R. Chaunsali, F. Li, J. Yang, Phys. Rev. Appl. 2019, 12, 024058.
dc.identifier.citedreferenceG. Zhang, Y. Gao, J. Appl. Phys. 2022, 132, 224108.
dc.identifier.citedreferenceP. Dorin, X. Liu, K. W. Wang, Appl. Phys. Lett. 2022, 120, 221703.
dc.identifier.citedreferenceS. S. Ganti, T. W. Liu, F. Semperlotti, New J. Phys. 2020, 22, 083001.
dc.identifier.citedreferenceY.-T. Wang, Y.-W. Tsai, New J. Phys. 2018, 20, 083031.
dc.identifier.citedreferenceH. Liu, Eur. J. Mech. A Solids 2023, 97, 104803.
dc.identifier.citedreferenceZ. D. Zhang, S. Y. Yu, M. H. Lu, Y. F. Chen, Phys. Rev. Appl. 2022, 17, 034029.
dc.identifier.citedreferenceW. Yuan, J. Zhao, Y. Long, J. Ren, Z. Zhong, Int. J. Mech. Sci. 2021, 197, 106347.
dc.identifier.citedreferenceS.-Y. Huo, J.-J. Chen, H.-B. Huang, G.-L. Huang, Sci. Rep. 2017, 7, 10335.
dc.identifier.citedreferenceG.-G. Xu, X.-W. Sun, X.-D. Wen, X.-X. Liu, T. Song, Z.-J. Liu, J. Appl. Phys. 2023, 133, 095110.
dc.identifier.citedreferenceJ. Ma, X. Xi, X. Sun, Adv. Mater. 2021, 33, 2006521.
dc.identifier.citedreferenceK. Guesmi, L. Abdeladim, S. Tozer, P. Mahou, T. Kumamoto, K. Jurkus, P. Rigaud, K. Loulier, N. Dray, P. Georges, M. Hanna, J. Livet, W. Supatto, E. Beaurepaire, F. Druon, Light Sci. Appl. 2018, 7, 12.
dc.identifier.citedreferenceG. Shambat, M. S. Mirotznik, G. W. Euliss, V. Smolski, E. G. Johnson, R. A. Athale, J. Nanophotonics 2009, 3, 031506.
dc.identifier.citedreferenceO. Turkmen, E. Ekmekci, G. Turhan-Sayan, IET Microwaves, Antennas Propag. 2012, 6, 1102.
dc.identifier.citedreferenceY. Chen, Z. Lan, J. Zhu, Phys. Rev. Appl. 2022, 17, 054003.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.