Show simple item record

Barriers instructors experience in adopting active learning: Instrument development

dc.contributor.authorCarroll, Laura J.
dc.contributor.authorReeping, David
dc.contributor.authorFinelli, Cynthia J.
dc.contributor.authorPrince, Michael J.
dc.contributor.authorHusman, Jenefer
dc.contributor.authorGraham, Matthew
dc.contributor.authorBorrego, Maura J.
dc.date.accessioned2023-11-06T16:35:23Z
dc.date.available2024-11-06 11:35:22en
dc.date.available2023-11-06T16:35:23Z
dc.date.issued2023-10
dc.identifier.citationCarroll, Laura J.; Reeping, David; Finelli, Cynthia J.; Prince, Michael J.; Husman, Jenefer; Graham, Matthew; Borrego, Maura J. (2023). "Barriers instructors experience in adopting active learning: Instrument development." Journal of Engineering Education 112(4): 1079-1108.
dc.identifier.issn1069-4730
dc.identifier.issn2168-9830
dc.identifier.urihttps://hdl.handle.net/2027.42/191380
dc.description.abstractBackgroundDespite well-documented benefits, instructor adoption of active learning has been limited in engineering education. Studies have identified barriers to instructors’ adoption of active learning, but there is no well-tested instrument to measure instructors perceptions of these barriers.PurposeWe developed and tested an instrument to measure instructors’ perceptions of barriers to adopting active learning and identify the constructs that coherently categorize those barriers.MethodWe used a five-phase process to develop an instrument to measure instructors’ perceived barriers to adopting active learning. In Phase 1, we built upon the Faculty Instructional Barriers and Identity Survey (FIBIS) to create a draft instrument. In Phases 2 and 3, we conducted exploratory factor analysis (EFA) on an initial 45-item instrument and a refined 21-item instrument, respectively. We conducted confirmatory factor analysis (CFA) in Phases 4 and 5 to test the factor structure identified in Phases 2 and 3.ResultsOur final instrument consists of 17 items and four factors: (1) student preparation and engagement; (2) instructional support; (3) instructor comfort and confidence; and (4) institutional environment/rewards. Instructor responses indicated that time considerations do not emerge as a standalone factor.ConclusionsOur 17-item instrument exhibits a sound factor structure and is reliable, enabling the assessment of perceived barriers to adopting active learning in different contexts. The four factors align with an existing model of instructional change in science, technology, engineering, and mathematics (STEM). Although time is a substantial instructor concern that did not comprise a standalone factor, it is closely related to multiple constructs in our final model.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherinstructional change
dc.subject.otheradoption
dc.subject.otherbarriers
dc.subject.otherfactor analysis
dc.subject.otherfaculty development
dc.subject.otheractive learning
dc.titleBarriers instructors experience in adopting active learning: Instrument development
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEngineering Education
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191380/1/jee20557.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191380/2/jee20557_am.pdf
dc.identifier.doi10.1002/jee.20557
dc.identifier.sourceJournal of Engineering Education
dc.identifier.citedreferencePrince, M. ( 2004 ). Does active learning work? A review of the research. Journal of Engineering Education, 93 (3), 223 – 232. https://doi.org/10.1002/j.2168-9830.2004.tb00809.x
dc.identifier.citedreferencePearson, E. S. ( 1932 ). The test of significance for the correlation coefficient: Some further results. Journal of the American Statistical Association, 27 ( 180 ), 424 – 426. https://doi.org/10.1080/01621459.1932.10502244
dc.identifier.citedreferenceQualtrics. ( 2021 ). Provo, UT. https://www.qualtrics.com
dc.identifier.citedreferenceR Core Team. ( 2023 ). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/
dc.identifier.citedreferenceRodríguez, M., Díaz, I., Gonzalez, E. J., & González-Miquel, M. ( 2018 ). Motivational active learning: An integrated approach to teaching and learning process control. Education for Chemical Engineers, 24, 7 – 12. https://doi.org/10.1016/j.ece.2018.06.003
dc.identifier.citedreferenceRogers, E. M. ( 2003 ). Diffusion of innovations ( 5th ed., pp. 166 – 206 ). Free Press.
dc.identifier.citedreferenceRosseel, Y. ( 2012 ). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48 ( 2 ), 1 – 36. http://www.jstatsoft.org/v48/i02/
dc.identifier.citedreferenceRouquette, A., & Falissard, B. ( 2011 ). Sample size requirements for the internal validation of psychiatric scales. International Journal of Methods in Psychiatric Research, 20 ( 4 ), 235 – 249. https://doi.org/10.1002/mpr.352
dc.identifier.citedreferenceSaris, W. E., Satorra, A., & Van der Veld, W. M. ( 2009 ). Testing structural equation models or detection of misspecifications? Structural Equation Modeling, 16 ( 4 ), 561 – 582. https://doi.org/10.1080/10705510903203433
dc.identifier.citedreferenceSauro, J., & Lewis, J. R. ( 2011 ). When designing usability questionnaires, does it hurt to be positive? Paper presented at the SIGCHI Conference on Human Factors in Computing Systems, BC, Vancouver, Canada. https://doi.org/10.1145/1978942.1979266
dc.identifier.citedreferenceSchafer, J. L. ( 1999 ). Multiple imputation: A primer. Statistical Methods in Medical Research, 8 ( 1 ), 3 – 15. https://doi.org/10.1177/096228029900800102
dc.identifier.citedreferenceShadle, S. E., Marker, A., & Earl, B. ( 2017 ). Faculty drivers and barriers: Laying the groundwork for undergraduate STEM education reform in academic departments. International Journal of STEM Education, 4 ( 8 ), 1 – 13. https://doi.org/10.1186/s40594-017-0062-7
dc.identifier.citedreferenceSoldz, S. ( 2002 ). ‘MINAP’: Module to calculate minimum average partial correlation for principal components. Stata User Written Command. http://fmwww.bc.edu/RePEc/bocode/m
dc.identifier.citedreferenceSonderen, E. V., Sanderman, R., & Coyne, J. C. ( 2013 ). Ineffectiveness of reverse wording of questionnaire items: Let’s learn from cows in the rain. PLoS One, 8 ( 7 ). https://doi.org/10.1371/journal.pone.0068967
dc.identifier.citedreferenceStains, M., Harshman, J., Barker, M. K., Chasteen, S. V., Cole, R., DeChenne-Peters, S. E., Eagan, M. K., Esson, J. M., Knight, J. K., Laski, F. A., Levis-Fitzgerald, M., Lee, C. J., Lo, S. M., McDonnell, L. M., McKay, T. A., Michelotti, N., Musgrove, A., Palmer, M. S., Plank, K. M., … Young, A. M. ( 2018 ). Anatomy of STEM teaching in North American universities. Science, 359 ( 6383 ), 1468 – 1470. https://doi.org/10.1126/science.aap8892
dc.identifier.citedreferenceStataCorp. ( 2019 ). Stata statistical software: Release 16. StataCorp LLC. https://www.stata.com/
dc.identifier.citedreferenceStataCorp. ( 2021 ). Stata statistical software: Release 17. StataCorp LLC. https://www.stata.com/
dc.identifier.citedreferenceSturtevant, H., & Wheeler, L. ( 2019 ). The STEM faculty instructional barriers and identity survey (FIBIS): Development and exploratory results. International Journal of STEM Education, 6 ( 35 ), 1 – 22. https://doi.org/10.1186/s40594-019-0185-0
dc.identifier.citedreferenceTheobald, E. J., Hill, M. J., Tran, E., Agrawal, S., Arroyo, E. N., Behling, S., Chambwe, N., Cintrón, D. L., Cooper, J. D., Dunster, G., Grummer, J. A., Hennessey, K., Hsiao, J., Iranon, N., Jones, L., Jordt, H., Keller, M., Lacey, M. E., Littlefield, C. E., & Freeman, S. ( 2020 ). Active learning narrows achievement gaps for underrepresented students in undergraduate science, technology, engineering, and math. Proceedings of the National Academy of Sciences of the United States of America, 117 ( 12 ), 6476 – 6483. https://doi.org/10.1073/pnas.1916903117
dc.identifier.citedreferenceThorndike, R. M., Cunningham, G. K., Thorndike, R. L., & Hagen, E. P. ( 1991 ). Measurement and evaluation in psychology and education ( 5th ed. ). Macmillan Publishing.
dc.identifier.citedreferenceTrigwell, K., Prosser, M., & Ginns, P. ( 2005 ). Phenomenographic pedagogy and a revised approaches to teaching inventory. Higher Education Research & Development, 24 ( 4 ), 349 – 360. https://doi.org/10.1080/07294360500284730
dc.identifier.citedreferenceTsang, A., & Harris, D. M. ( 2016 ). Faculty and second-year medical student perceptions of active learning in an integrated curriculum. Advances in Physiological Education, 40 (4), 446 – 453. https://doi.org/10.1152/advan.00079.2016
dc.identifier.citedreferenceVelicer, W. F. ( 1976 ). Determining the number of components from the matrix of partial correlations. Psychometrika, 41 ( 3 ), 321 – 327. https://doi.org/10.1007/BF02293557
dc.identifier.citedreferenceVelicer, W. F., Eaton, C. A., & Fava, J. L. ( 2000 ). Construct explication through factor or component analysis: A review and evaluation of alternative procedures for determining the number of factor or components. In R. D. Goffin & E. Helmes (Eds.), Problems and solutions in human assessment: Honoring Douglas N. Jackson at seventy (pp. 41 – 71 ). Kluwer Academic Publishers.
dc.identifier.citedreferenceViskupic, K., Ryker, K., Teasdale, R., Manduca, C., Iverson, E., Farthing, D., Bruckner, M. Z., & McFadden, R. ( 2019 ). Classroom observations indicate the positive impacts of discipline-based professional development. Journal for STEM Education Research, 2 (2), 201 – 228. https://doi.org/10.1007/s41979-019-00015-w
dc.identifier.citedreferenceWatkins, M. W. ( 2022 ). A step-by-step guide to exploratory factor analysis with Stata. Routledge.
dc.identifier.citedreferenceZibrowski, E. M., Weston, W. W., & Goldszmidt, M. A. ( 2008 ). ‘I don’t have time’: Issues of fragmentation, prioritisation and motivation for education scholarship among medical faculty. Medical Education, 42 ( 9 ), 872 – 878. https://doi.org/10.1111/j.1365-2923.2008.03145.x
dc.identifier.citedreferenceJorgensen, T. D., Pornprasertmanit, S., Schoemann, A. M., & Rosseel, Y. ( 2022 ). semTools: Useful tools for structural equation modeling. R package version 0.5-6. https://CRAN.R-project.org/package=semTools
dc.identifier.citedreferenceAndrews, T. C., & Lemons, P. P. ( 2015 ). It’s personal: Biology instructors prioritize personal evidence over empirical evidence in teaching decisions. CBE Life Sciences Education, 14 ( 1 ), ar7. https://doi.org/10.1187/cbe.14-05-0084
dc.identifier.citedreferenceApkarian, N., Henderson, C., Stains, M., Raker, J., Johnson, E., & Dancy, M. ( 2021 ). What really impacts the use of active learning in undergraduate STEM education? Results from a national survey of chemistry, mathematics, and physics instructors. PLoS One, 16 ( 2 ), e0247544. https://doi.org/10.1371/journal.pone.0247544
dc.identifier.citedreferenceBabbie, E. ( 2011 ). Paradigms, theory, and research. In E. Mitchell, D. Moneypenny, E. Parkins & M. Cregger (Eds.), The basics of social research ( 5th ed., pp. 31 – 63 ). Wadsworth.
dc.identifier.citedreferenceBaglin, J. ( 2014 ). Improving your exploratory factor analysis for ordinal data: A demonstration using FACTOR. Practical Assessment, Research, and Evaluation, 19 ( 1 ), 1 – 15. https://doi.org/10.7275/dsep-4220
dc.identifier.citedreferenceBartlett, M. S. ( 1950 ). Test of significance in factor analysis. British Journal of Psychology, 3 ( 2 ), 77 – 85. https://doi.org/10.1111/j.2044-8317.1950.tb00285.x
dc.identifier.citedreferenceBennett, D. A. ( 2001 ). How can I deal with missing data in my study? Australian and New Zealand Journal of Public Health, 25 ( 5 ), 464 – 469. https://doi.org/10.1111/j.1467-842X.2001.tb00294.x
dc.identifier.citedreferenceBorrego, M., Froyd, J. E., & Hall, T. S. ( 2010 ). Diffusion of engineering education innovations: A survey of awareness and adoption rates in U.S. engineering departments. Journal of Engineering Education, 99 ( 3 ), 185 – 207. https://doi.org/10.1002/j.2168-9830.2010.tb01056.x
dc.identifier.citedreferenceBorrego, M., & Henderson, C. ( 2014 ). Increasing the use of evidence-based teaching in STEM higher education: A comparison of eight change strategies. Journal of Engineering Education, 103 ( 2 ), 220 – 252. https://doi.org/10.1002/jee.20040
dc.identifier.citedreferenceBrownell, S. E., & Tanner, K. D. ( 2012 ). Barriers to faculty pedagogical change: Lack of training, time, incentives, and … tensions with professional identity? CBE Life Sciences Education, 11 (4), 339 – 346. https://doi.org/10.1187/cbe.12-09-0163
dc.identifier.citedreferenceByrne, B. M. ( 1994 ). Structural equation modeling with EQS and EQS/Windows: Basic concepts, applications, and programming. Sage Publications.
dc.identifier.citedreferenceChyung, S. Y., Barkin, J. R., & Shamsy, J. A. ( 2018 ). Evidence-based survey design: The use of negatively worded items in surveys. Performance Improvement, 57 ( 3 ), 16 – 25. https://doi.org/10.1002/pfi.21749
dc.identifier.citedreferenceCollinson, V., & Fedoruk Cook, T. ( 2001 ). “I don’t have enough time”: Teachers’ interpretations of time as a key to learning and school change. Journal of Educational Administration, 39 ( 3 ), 266 – 281. https://doi.org/10.1108/09578230110392884
dc.identifier.citedreferenceCostello, A. B., & Osborne, J. ( 2005 ). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment, Research & Evaluation, 10, 1–9. https://doi.org/10.7275/jyj1-4868
dc.identifier.citedreferenceCummins, R. A., & Gullone, E. ( 2000 ). Why we should not use 5-point Likert scales: The case for subjective quality of life measurement. Second International Conference on Quality of Life in Cities, 74 ( 2 ), 74 – 93.
dc.identifier.citedreferenceCurran, P. J., West, S. G., & Finch, J. F. ( 1996 ). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1 ( 1 ), 16 – 29. https://doi.org/10.1037/1082-989X.1.1.16
dc.identifier.citedreferenceCutler, S., Borrego, M., Henderson, C., Prince, M., & Froyd, J. ( 2012 ). A comparison of electrical, computer, and chemical engineering faculty’s progression through the innovation-decision process. Paper presented at the Meeting of Frontiers in Education Conference Proceedings, Seattle, WA. https://doi.org/10.1109/FIE.2012.6462405
dc.identifier.citedreferenceDancy, M., & Henderson, C. ( 2008 ). Barriers and promises in STEM reform. The National Academies of Sciences Engineering Medicine. https://sites.nationalacademies.org/cs/groups/dbassesite/documents/webpage/dbasse_072636.pdf
dc.identifier.citedreferenceDeMonbrun, M., Cañas, J., & Finelli, C. J. ( 2019 ). Influencing changes in teaching: Addressing motivators and barriers to adopting evidence-based teaching practices in engineering. Journal on Excellence in College Teaching, 30 ( 1 ), 101 – 125.
dc.identifier.citedreferenceDillman, D. A., Smyth, J. D., & Christian, L. M. ( 2014 ). Internet, phone, mail and mixed-mode surveys: The tailored design method. John Whiley & Sons.
dc.identifier.citedreferenceDunlap, H. F. ( 1931 ). An empirical determination of means, standard deviations and correlation coefficients drawn from rectangular distributions. Annals of Mathematical Statistics, 2, 66 – 81. https://doi.org/10.1214/aoms/1177733043
dc.identifier.citedreferenceEccles, J. S., & Wigfield, A. ( 2002 ). Motivational beliefs, values, and goals. Annual Review of Psychology, 53 ( 1 ), 109 – 132. https://doi.org/10.1146/annurev.psych.53.100901.135153
dc.identifier.citedreferenceEnder, P. B. ( 2010 ). fapara. Factor analysis parallel analysis. Stata User Written Command. https://stats.idre.ucla.edu/stat/stata/ado/analysis
dc.identifier.citedreferenceFabrigar, L. R., Wegener, D. T., MacCallum, R. C., & Strahan, E. J. ( 1999 ). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4 ( 3 ), 272 – 299. https://doi.org/10.1037/1082-989X.4.3.272
dc.identifier.citedreferenceFinelli, C. J., Daly, S. R., & Richardson, K. M. ( 2014 ). Bridging the research-to-practice gap: Designing an institutional change plan using local evidence. Journal of Engineering Education, 103 ( 2 ), 331 – 361. https://doi.org/10.1002/jee.20042
dc.identifier.citedreferenceFinney, S. J., & DiStefano, C. ( 2013 ). Nonnormal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course ( 2nd ed., pp. 439 – 492 ). Information Age Publishing.
dc.identifier.citedreferenceFinstad, K. ( 2010 ). Response interpolation and scale sensitivity: Evidence against 5-point scales. Journal of Usability Studies, 5 ( 3 ), 104 – 110.
dc.identifier.citedreferenceFreeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H., & Wenderoth, M. P. ( 2014 ). Active learning increases student performance in science, engineering, and mathematics. Proceedings of the National Academy of Sciences, 111 ( 23 ), 8410 – 8415. https://doi.org/10.1073/pnas.1319030111
dc.identifier.citedreferenceGorsuch, R. L. ( 1983 ). Factor analysis ( 2nd ed. ). Erlbaum Associates.
dc.identifier.citedreferenceHavlicek, L. L., & Peterson, N. L. ( 1976 ). Robustness of the Pearson correlation against violation of assumption. Perceptual and Motor Skills, 43 (3), 1319 – 1334. https://doi.org/10.2466/pms.1976.43.3f.1319
dc.identifier.citedreferenceHenderson, C. ( 2008 ). Promoting instructional change in new faculty: An evaluation of the physics and astronomy new faculty workshop. American Journal of Physics, 76 ( 2 ), 179 – 187. https://doi.org/10.1119/1.2820393
dc.identifier.citedreferenceHenderson, C., Beach, A., & Finkelstein, N. ( 2011 ). Facilitating change in undergraduate STEM instructional practices: An analytic review of the literature. Journal of Research in Science Teaching, 48 ( 8 ), 952 – 984. https://doi.org/10.1002/tea.20439
dc.identifier.citedreferenceHenderson, C., & Dancy, M. ( 2007 ). Barriers to the use of research-based instructional strategies: The influence of both individual and situational characteristics. Physical Review Special Topics—Physics Education Research, 3 ( 2 ), 020102. https://doi.org/10.1103/PhysRevSTPER.3.020102
dc.identifier.citedreferenceHinkin, T. R. ( 1995 ). A review of scale development practices in the study of organizations. Journal of Management, 21 ( 5 ), 967 – 988. https://doi.org/10.1177/014920639502100509
dc.identifier.citedreferenceHinkin, T. R. ( 1998 ). A brief tutorial on the development of measures for use in survey questionnaires. Organizational Research Methods, 1 ( 1 ), 104 – 121. https://doi.org/10.1177/109442819800100106
dc.identifier.citedreferenceHolzberg, J., Ellis, R., Virgile, M., Nelson, D., Edgar, J., Phipps, P., & Kaplan, R. ( 2017 ). Assessing the feasibility of asking about gender identity in the current population survey: results from focus groups with members of the transgender population (Survey Methodology #2018-05). U.S. Census Bureau. http://www.census.gov/content/dam/Census/library/working-papers/2018/adrm/rsm2018-05.pdf
dc.identifier.citedreferenceHorn, J. L. ( 1965 ). A rationale and test for the number of factors in factor analysis. Psychometrika, 30 ( 2 ), 179 – 185. https://doi.org/10.1007/bf02289447
dc.identifier.citedreferenceHoward, M. C. ( 2016 ). A review of exploratory factor analysis decisions and overview of current practices: What we are doing and how can we improve? International Journal of Human-Computer Interaction, 32 ( 1 ), 51 – 62. https://doi.org/10.1080/10447318.2015.1087664
dc.identifier.citedreferenceHu, L., & Bentler, P. ( 1995 ). Evaluating model fit. In R. H. Hoyle (Ed.), Structural equation modeling: Concepts, issues, and applications (pp. 76 – 99 ). Sage Publications.
dc.identifier.citedreferenceJackson, D. L. ( 2003 ). Revisiting sample size and number of parameter estimates: Some support for the N:Q hypothesis. Structural Equation Modeling, 10 ( 1 ), 128 – 141. https://doi.org/10.1207/S15328007SEM1001_6
dc.identifier.citedreferenceKaiser, H. F., & Rice, J. ( 1974 ). Little jiffy, mark IV. Educational and Psychological Measurement, 34 ( 1 ), 111 – 117. https://doi.org/10.1177/001316447403400115
dc.identifier.citedreferenceKline, R. B. ( 2016 ). Principles and practice of structural equation modeling ( 4th ed. ). The Guilford Press.
dc.identifier.citedreferenceKolenikov, S. (n.d.). polychoric—The polychoric correlation package (Version No. 1.4). Stata User Written Command. http://staskolenikov.net/stata
dc.identifier.citedreferenceKrosnick, J. A., & Fabrigar, L. R. ( 1997 ). Designing rating scales for effective measurement in surveys. In L. Lyberg, P. Biemer, M. Collins, E. de Leeuw, C. Dippo, N. Schwarz, & D. Trewin (Eds.), Survey measurement and process quality (pp. 141 – 164 ). John Wiley & Sons. https://doi.org/10.1002/9781118490013.ch6
dc.identifier.citedreferenceKyriazos, T. A. ( 2018 ). Applied psychometrics: Sample size and sample power considerations in factor analysis (EFA, CFA) and SEM in general. Psychology, 9 ( 8 ), 2207 – 2230. https://doi.org/10.4236/psych.2018.98126
dc.identifier.citedreferenceLattuca, L. R., & Pollard, J. R. ( 2016 ). Toward a conceptualization of faculty decision-making about curricular and instructional change. In L. Leisyte & U. Wilkesmann (Eds.), Organizing academic work in higher education: Teaching, learning and identities (pp. 89 – 108 ). Taylor & Francis Group.
dc.identifier.citedreferenceLombardi, D., Shipley, T. F., Bailey, J. M., Bretones, P. S., Prather, E. E., Ballen, C. J., Knight, J. K., Smith, M. K., Stowe, R. L., Cooper, M. M., Prince, M., Atit, K., Uttal, D. H., LaDue, N. D., McNeal, P. M., Ryker, K., St. John, K., van der Hoeven Kraft, K. J., & Docktor, J. L. ( 2021 ). The curious construct of active learning. Psychological Science in the Public Interest, 22 ( 1 ), 8 – 43. https://doi.org/10.1177/1529100620973974
dc.identifier.citedreferenceLucke, T., Dunn, P. K., & Christie, M. ( 2017 ). Activating learning in engineering education using ICT and the concept of flipping the classroom. European Journal of Engineering Education, 42 ( 1 ), 45 – 57. https://doi.org/10.1080/03043797.2016.1201460
dc.identifier.citedreferenceLund, T. J., & Stains, M. ( 2015 ). The importance of context: An exploration of factors influencing the adoption of student-centered teaching among chemistry, biology, and physics faculty. International Journal of STEM Education, 2 ( 1 ), 1 – 21. https://doi.org/10.1186/s40594-015-0026-8
dc.identifier.citedreferenceMacCallum, R. C., Browne, M. W., & Sugawara, H. M. ( 1996 ). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1 ( 2 ), 130 – 149. https://doi.org/10.1037/1082-989X.1.2.130
dc.identifier.citedreferenceManduca, C. A., Iverson, E. R., Luxenberg, M., Macdonald, R. H., McConnell, D. A., Mogk, D. W., & Tewksbury, B. J. ( 2017 ). Improving undergraduate STEM education: The efficacy of discipline-based professional development. Science Advances, 3 ( 2 ), e1600193. https://doi.org/10.1126/sciadv.1600193
dc.identifier.citedreferenceMarlor, L., Finelli, C. J., Husman, J., Borrego, M., Graham, M., Smith, M., & Prince, M. ( 2022 ). Reducing student resistance to active learning through faculty development: Project update. Paper presented at the ASEE Annual Conference and Exposition, Minneapolis, MN.
dc.identifier.citedreferenceMatsunaga, M. ( 2010 ). How to factor-analyze your data right: Do’s, don’ts, and how-to’s. International Journal of Psychological Research, 3 ( 1 ), 97 – 110. https://doi.org/10.21500/20112084.854
dc.identifier.citedreferenceMcCoach, D. B., Gable, R. K., & Madura, J. P. ( 2013 ). Instrument development in the affective domain: School and corporate applications ( 3rd ed. ). Springer.
dc.identifier.citedreferenceMichael, J. ( 2007 ). Faculty perceptions about barriers to active learning. College Teaching, 55 ( 2 ), 42 – 47. https://doi.org/10.3200/CTCH.55.2.42-47
dc.identifier.citedreferenceMorales, J. C., & Prince, M. J. ( 2019 ). Promoting lasting change in teaching practices through a summer immersion faculty development program. International Journal of Engineering Education, 35 ( 3 ), 968 – 985.
dc.identifier.citedreferenceMuthen, B., & Kaplan, D. ( 1992 ). A comparison of some methodologies for the factor analysis of non-normal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45 ( 1 ), 19 – 30. https://doi.org/10.1111/j.2044-8317.1992.tb00975.x
dc.identifier.citedreferenceNational Research Council. ( 2012 ). Instructional Strategies. In S. R. Singer, N. R. Nielsen, & H. A. Schweingruber (Eds.), Discipline-based education research: Understanding and improving learning in undergraduate science and engineering. The National Academies Press; 119–139.
dc.identifier.citedreferenceNational Science Foundation National Center for Science and Engineering Statistics. ( 2019 ). Women, minorities, and persons with disabilities in science and engineering: 2019. (Special report NSF 19–304). https://ncses.nsf.gov/pubs/nsf19304/data
dc.identifier.citedreferenceNguyen, K. A., Borrego, M., Finelli, C. J., DeMonbrun, M., Crockett, C., Tharayil, S., Shekhar, P., Waters, C., & Rosenberg, R. ( 2021 ). Instructor strategies to aid implementation of active learning: A systematic literature review. International Journal of STEM Education, 8 ( 1 ), 1 – 18. https://doi.org/10.1186/s40594-021-00270-7
dc.identifier.citedreferenceNorman, G. ( 2010 ). Likert scales, levels of measurement and the “laws” of statistics. Advances in Health Sciences Education, 15 ( 5 ), 625 – 632. https://doi.org/10.1007/s10459-010-9222-y
dc.identifier.citedreferenceNunnally, J. ( 1978 ). Psychometric theory ( 2nd ed. ). McGraw-Hill.
dc.identifier.citedreferenceNunnally, J. C., & Bernstein, I. H. ( 1994 ). Psychometric theory ( 3rd ed. ). McGraw-Hill.
dc.identifier.citedreferencePearson, E. S. ( 1931a ). The analysis of variance in the case of non-normal variation. Biometrika, 23 ( 1–2 ), 114 – 133. https://doi.org/10.1093/biomet/23.1-2.114
dc.identifier.citedreferencePearson, E. S. ( 1931b ). The test of significance for the correlation coefficient. Journal of the American Statistical Association, 26 ( 174 ), 128 – 134. https://doi.org/10.1080/01621459.1931.10503208
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.