Show simple item record

A Guideline to Mitigate Interfacial Degradation Processes in Solid-State Batteries Caused by Cross Diffusion

dc.contributor.authorDin, Mir Mehraj Ud
dc.contributor.authorLadenstein, Lukas
dc.contributor.authorRing, Joseph
dc.contributor.authorKnez, Daniel
dc.contributor.authorSmetaczek, Stefan
dc.contributor.authorKubicek, Markus
dc.contributor.authorSadeqi-Moqadam, Mohsen
dc.contributor.authorGanschow, Steffen
dc.contributor.authorSalagre, Elena
dc.contributor.authorMichel, Enrique G.
dc.contributor.authorLode, Stefanie
dc.contributor.authorKothleitner, Gerald
dc.contributor.authorDugulan, Iulian
dc.contributor.authorSmith, Jeffrey G.
dc.contributor.authorLimbeck, Andreas
dc.contributor.authorFleig, Jürgen
dc.contributor.authorSiegel, Donald J.
dc.contributor.authorRedhammer, Günther J.
dc.contributor.authorRettenwander, Daniel
dc.date.accessioned2023-11-06T16:35:52Z
dc.date.available2024-11-06 11:35:50en
dc.date.available2023-11-06T16:35:52Z
dc.date.issued2023-10
dc.identifier.citationDin, Mir Mehraj Ud; Ladenstein, Lukas; Ring, Joseph; Knez, Daniel; Smetaczek, Stefan; Kubicek, Markus; Sadeqi-Moqadam, Mohsen ; Ganschow, Steffen; Salagre, Elena; Michel, Enrique G.; Lode, Stefanie; Kothleitner, Gerald; Dugulan, Iulian; Smith, Jeffrey G.; Limbeck, Andreas; Fleig, Jürgen ; Siegel, Donald J.; Redhammer, Günther J. ; Rettenwander, Daniel (2023). "A Guideline to Mitigate Interfacial Degradation Processes in Solid- State Batteries Caused by Cross Diffusion." Advanced Functional Materials 33(42): n/a-n/a.
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/2027.42/191388
dc.description.abstractDiffusion of transition metals across the cathode–electrolyte interface is identified as a key challenge for the practical realization of solid-state batteries. This is related to the formation of highly resistive interphases impeding the charge transport across the materials. Herein, the hypothesis that formation of interphases is associated with the incorporation of Co into the Li7La3Zr2O12 lattice representing the starting point of a cascade of degradation processes is investigated. It is shown that Co incorporates into the garnet structure preferably four-fold coordinated as Co2+ or Co3+ depending on oxygen fugacity. The solubility limit of Co is determined to be around 0.16 per formula unit, whereby concentrations beyond this limit causes a cubic-to-tetragonal phase transition. Moreover, the temperature-dependent Co diffusion coefficient is determined, for example, D700 °C = 9.46 × 10−14 cm2 s−1 and an activation energy Ea = 1.65 eV, suggesting that detrimental cross diffusion will take place at any relevant process condition. Additionally, the optimal protective Al2O3 coating thickness for relevant temperatures is studied, which allows to create a process diagram to mitigate any degradation with a minimum compromise on electrochemical performance. This study provides a tool to optimize processing conditions toward developing high energy density solid-state batteries.The incorporation of Co into Li7La3Zr2O12 is identified to play a key role in the degradation processes taking place at the interface formed with LiCoO2 during high temperature processing. It is found that the degradation is unavoidable but can be mitigated with a minimum compromise in performance by tailoring the interfacial coating layer thickness for any relevant processing conditions.
dc.publisherMadison
dc.publisherWiley Periodicals, Inc.
dc.subject.otherLi7La3Zr2O12
dc.subject.othersolid electrolytes
dc.subject.othersolid-state batteries
dc.subject.otherinterfacial degradation
dc.subject.othercross diffusion
dc.titleA Guideline to Mitigate Interfacial Degradation Processes in Solid-State Batteries Caused by Cross Diffusion
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelEngineering (General)
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191388/1/adfm202303680.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191388/2/adfm202303680-sup-0001-SuppMat.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191388/3/adfm202303680_am.pdf
dc.identifier.doi10.1002/adfm.202303680
dc.identifier.sourceAdvanced Functional Materials
dc.identifier.citedreferenceC. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Inorg. Chem. 2011, 50, 1089.
dc.identifier.citedreferenceG. Vardar, W. J. Bowman, Q. Lu, J. Wang, R. J. Chater, A. Aguadero, R. Seibert, J. Terry, A. Hunt, I. Waluyo, D. D. Fong, A. Jarry, E. J. Crumlin, S. L. Hellstrom, Y.-M. Chiang, B. Yildiz, Chem. Mater. 2018, 30, 6259.
dc.identifier.citedreferenceK. Park, B. C. Yu, J. W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, Chem. Mater. 2016, 28, 8051.
dc.identifier.citedreferenceS. Afyon, F. Krumeich, J. L. Rupp, J. Mater. Chem. A 2015, 3, 18636.
dc.identifier.citedreferenceY. Zhu, X. He, Y. Mo, J. Mater. Chem. A 2016, 4, 3253.
dc.identifier.citedreferenceY. Ren, T. Liu, Y. Shen, Y. Lin, C. W. Nan, J. Materiomics 2016, 2, 256.
dc.identifier.citedreferenceA. Bhim, S. Laha, J. Gopalakrishnan, S. Natarajan, Chem. - Asian J. 2017, 12, 2734.
dc.identifier.citedreferenceK. Kusaka, K. Hagiya, M. Ohmasa, Y. Okano, M. Mukai, K. Iishi, N. Haga, Phys. Chem. Miner. 2001, 28, 150.
dc.identifier.citedreferenceD. L. Wood, J. P. Remeika, J. Chem. Phys. 1967, 46, 3595.
dc.identifier.citedreferenceD. Rettenwander, P. Blaha, R. Laskowski, K. Schwarz, P. Bottke, M. Wilkening, C. A. Geiger, G. Amthauer, Chem. Mater. 2014, 26, 2617.
dc.identifier.citedreferenceB. Karasulu, S. P. Emge, M. F. Groh, C. P. Grey, A. J. Morris, J. Am. Chem. Soc. 2020, 142, 3132.
dc.identifier.citedreferenceR. Wagner, G. J. Redhammer, D. Rettenwander, G. Tippelt, A. Welzl, S. Taibl, J. Fleig, A. Franz, W. Lottermoser, G. Amthauer, Chem. Mater. 2016, 28, 5943.
dc.identifier.citedreferenceG. J. Redhammer, G. Tippelt, A. Portenkirchner, D. Rettenwander, Crystals 2021, 11, 721.
dc.identifier.citedreferenceG. J. Redhammer, P. Badami, M. Meven, S. Ganschow, S. Berendts, G. Tippelt, D. Rettenwander, ACS Appl. Mater. Interfaces 2020, 13, 350.
dc.identifier.citedreferenceJ. Awaka, N. Kijima, H. Hayakawa, J. Akimoto, J. Solid State Chem. 2009, 182, 2046.
dc.identifier.citedreferenceM. I. Demchuk, É. P. Dubrovina, N. V. Kuleshov, V. P. Mikhailov, V. A. Sandulenko, J. Appl. Spectrosc. 1990, 53, 1170.
dc.identifier.citedreferenceM. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717.
dc.identifier.citedreferenceF. C. Larcht’e, J. L. Cahn, Acta Metall. 1982, 30, 1835.
dc.identifier.citedreferenceD. Mazza, F. Abbatista, M. Vallino, G. Ivaldi, J. Less-Common Met. 1985, 106, 277.
dc.identifier.citedreferenceT. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. L. Allen, E. Kioupakis, D. J. Siegel, J. Sakamoto, ACS Energy Lett. 2017, 2, 462.
dc.identifier.citedreferenceK. C. Santosh, R. C. Longo, K. Xiong, K. Cho, Solid State Ionics 2014, 261, 100.
dc.identifier.citedreferenceA. M. Nolan, Y. Zhu, X. He, Q. Bai, Y. Mo, Joule 2018, 2, 2016.
dc.identifier.citedreferenceC. Wang, K. Fu, S. P. Kammampata, D. W. McOwen, A. J. Samson, L. Zhang, G. T. Hitz, A. M. Nolan, E. D. Wachsman, Y. Mo, V. Thangadurai, Chem. Rev. 2020, 120, 4257.
dc.identifier.citedreferenceM. Philipp, B. Gadermaier, P. Posch, I. Hanzu, S. Ganschow, M. Meven, R. Rettenwander, G. J. Redhammer, H. M. R. Wilkening, Adv. Mater. Interfaces 2020, 7, 2000450.
dc.identifier.citedreferenceR. Inada, K. Kusakabe, T. Tanaka, S. Kudo, Y. Sakurai, Solid State Ionics 2014, 262, 568.
dc.identifier.citedreferenceL. G. Harrison, Trans. Faraday Soc. 1961, 57, 1191.
dc.identifier.citedreferenceY. Mishin, C. Herzig, J. Bernardini, W. Gust, Int. Mater. Rev. 1997, 42, 155.
dc.identifier.citedreferenceY. Ren, E. D. Wachsman, J. Electrochem. Soc. 2022, 169, 040529.
dc.identifier.citedreferenceP. S. Dobal, R. S. Katiyar, M. S. Tomar, A. Hidalgo, J. Mater. Res. 2001, 16, 1.
dc.identifier.citedreferenceE. G. Gontier-Moya, G. Erdelyi, F. Moya, K. Freitag, Philos. Mag. A 2001, 81, 2665.
dc.identifier.citedreferenceBruker, Bruker AXS Inc, Madison, Wisconsin, USA, 2012.
dc.identifier.citedreferenceG. M. Sheldrick, Acta Crystallogr. 2008, 64, 112.
dc.identifier.citedreferenceL. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849.
dc.identifier.citedreferenceM. Schmid, H.-P. Steinrück, J. M. Gottfried, Surf. Interface Anal. 2014, 46, 505.
dc.identifier.citedreferenceG. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558.
dc.identifier.citedreferenceG. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 285.
dc.identifier.citedreferenceG. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169.
dc.identifier.citedreferenceP. E. Blochl, Phys. Rev. B 1994, 50, 17953.
dc.identifier.citedreferenceJ. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865.
dc.identifier.citedreferenceJ. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207.
dc.identifier.citedreferenceA. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, J. Chem. Phys. 2006, 125, 224106.
dc.identifier.citedreferenceV. Thangadurai, W. Weppner, J. Am. Ceram. Soc. 2005, 88, 411.
dc.identifier.citedreferenceV. Thangadurai, H. Kaack, W. Weppner, J. Am. Ceram. Soc. 2003, 86, 437.
dc.identifier.citedreferenceR. Murugan, V. Thangadurai, W. Weppner, Angew. Chem., Int. Ed. 2007, 46, 7778.
dc.identifier.citedreferenceA. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Chem. Rev. 2020, 120, 6878.
dc.identifier.citedreferenceK. V. Kravchyk, D. T. Karabay, M. V. Kovalenko, Sci. Rep. 2022, 12, 1177.
dc.identifier.citedreferenceM. J. Wang, E. Kazyak, N. P. Dasgupta, J. Sakamoto, Joule 2021, 5, 1371.
dc.identifier.citedreferenceK. Takada, N. Ohta, L. Zhang, X. Xu, B. T. Hang, T. Ohnishi, M. Osada, T. Sasaki, Solid State Ionics 2012, 225, 594.
dc.identifier.citedreferenceK. Takada, Acta Mater. 2013, 61, 759.
dc.identifier.citedreferenceY. Ren, T. Danner, A. Moy, M. Finsterbusch, T. Hamann, J. Dippell, T. Fuchs, M. Müller, R. Hoft, A. Weber, L. A. Curtiss, Adv. Energy Mater. 2023, 13, 2201939.
dc.identifier.citedreferenceX. Chen, J. Xie, X. Zhao, T. Zhu, Adv. Energy Sustainability Res. 2021, 2, 2000101.
dc.identifier.citedreferenceA. Sakuda, A. Hayashi, M. Tatsumisagoi, Chem. Mater. 2010, 22, 949.
dc.identifier.citedreferenceM. Ihrig, L. Y. Kuo, S. Lobe, A. M. Laptev, C. A. Lin, C. H. Tu, R. Ye, P. Kaghazchi, L. Cressa, S. Eswara, S. K. Lin, ACS Appl. Mater. Interfaces 2023, 15, 4101.
dc.identifier.citedreferenceR. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J. O. Binder, P. Hartmann, W. G. Zeier, J. Janek, Chem. Mater. 2017, 29, 5574.
dc.identifier.citedreferenceX. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572.
dc.identifier.citedreferenceK. J. Kim, J. L. M. Rup, Energy Environ. Sci. 2020, 13, 4930.
dc.identifier.citedreferenceJ. Sastre, X. Chen, A. Aribia, A. N. Tiwari, Y. E. Romanyuk, ACS Appl. Mater. Interfaces 2020, 12, 36196.
dc.identifier.citedreferenceK. H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C. A. Fisher, T. Hirayama, R. Murugan, Z. Ogumi, J. Power Sources 2011, 196, 764.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.