A Guideline to Mitigate Interfacial Degradation Processes in Solid-State Batteries Caused by Cross Diffusion
dc.contributor.author | Din, Mir Mehraj Ud | |
dc.contributor.author | Ladenstein, Lukas | |
dc.contributor.author | Ring, Joseph | |
dc.contributor.author | Knez, Daniel | |
dc.contributor.author | Smetaczek, Stefan | |
dc.contributor.author | Kubicek, Markus | |
dc.contributor.author | Sadeqi-Moqadam, Mohsen | |
dc.contributor.author | Ganschow, Steffen | |
dc.contributor.author | Salagre, Elena | |
dc.contributor.author | Michel, Enrique G. | |
dc.contributor.author | Lode, Stefanie | |
dc.contributor.author | Kothleitner, Gerald | |
dc.contributor.author | Dugulan, Iulian | |
dc.contributor.author | Smith, Jeffrey G. | |
dc.contributor.author | Limbeck, Andreas | |
dc.contributor.author | Fleig, Jürgen | |
dc.contributor.author | Siegel, Donald J. | |
dc.contributor.author | Redhammer, Günther J. | |
dc.contributor.author | Rettenwander, Daniel | |
dc.date.accessioned | 2023-11-06T16:35:52Z | |
dc.date.available | 2024-11-06 11:35:50 | en |
dc.date.available | 2023-11-06T16:35:52Z | |
dc.date.issued | 2023-10 | |
dc.identifier.citation | Din, Mir Mehraj Ud; Ladenstein, Lukas; Ring, Joseph; Knez, Daniel; Smetaczek, Stefan; Kubicek, Markus; Sadeqi-Moqadam, Mohsen ; Ganschow, Steffen; Salagre, Elena; Michel, Enrique G.; Lode, Stefanie; Kothleitner, Gerald; Dugulan, Iulian; Smith, Jeffrey G.; Limbeck, Andreas; Fleig, Jürgen ; Siegel, Donald J.; Redhammer, Günther J. ; Rettenwander, Daniel (2023). "A Guideline to Mitigate Interfacial Degradation Processes in Solid- State Batteries Caused by Cross Diffusion." Advanced Functional Materials 33(42): n/a-n/a. | |
dc.identifier.issn | 1616-301X | |
dc.identifier.issn | 1616-3028 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/191388 | |
dc.description.abstract | Diffusion of transition metals across the cathode–electrolyte interface is identified as a key challenge for the practical realization of solid-state batteries. This is related to the formation of highly resistive interphases impeding the charge transport across the materials. Herein, the hypothesis that formation of interphases is associated with the incorporation of Co into the Li7La3Zr2O12 lattice representing the starting point of a cascade of degradation processes is investigated. It is shown that Co incorporates into the garnet structure preferably four-fold coordinated as Co2+ or Co3+ depending on oxygen fugacity. The solubility limit of Co is determined to be around 0.16 per formula unit, whereby concentrations beyond this limit causes a cubic-to-tetragonal phase transition. Moreover, the temperature-dependent Co diffusion coefficient is determined, for example, D700 °C = 9.46 × 10−14 cm2 s−1 and an activation energy Ea = 1.65 eV, suggesting that detrimental cross diffusion will take place at any relevant process condition. Additionally, the optimal protective Al2O3 coating thickness for relevant temperatures is studied, which allows to create a process diagram to mitigate any degradation with a minimum compromise on electrochemical performance. This study provides a tool to optimize processing conditions toward developing high energy density solid-state batteries.The incorporation of Co into Li7La3Zr2O12 is identified to play a key role in the degradation processes taking place at the interface formed with LiCoO2 during high temperature processing. It is found that the degradation is unavoidable but can be mitigated with a minimum compromise in performance by tailoring the interfacial coating layer thickness for any relevant processing conditions. | |
dc.publisher | Madison | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | Li7La3Zr2O12 | |
dc.subject.other | solid electrolytes | |
dc.subject.other | solid-state batteries | |
dc.subject.other | interfacial degradation | |
dc.subject.other | cross diffusion | |
dc.title | A Guideline to Mitigate Interfacial Degradation Processes in Solid-State Batteries Caused by Cross Diffusion | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbsecondlevel | Engineering (General) | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191388/1/adfm202303680.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191388/2/adfm202303680-sup-0001-SuppMat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191388/3/adfm202303680_am.pdf | |
dc.identifier.doi | 10.1002/adfm.202303680 | |
dc.identifier.source | Advanced Functional Materials | |
dc.identifier.citedreference | C. A. Geiger, E. Alekseev, B. Lazic, M. Fisch, T. Armbruster, R. Langner, M. Fechtelkord, N. Kim, T. Pettke, W. Weppner, Inorg. Chem. 2011, 50, 1089. | |
dc.identifier.citedreference | G. Vardar, W. J. Bowman, Q. Lu, J. Wang, R. J. Chater, A. Aguadero, R. Seibert, J. Terry, A. Hunt, I. Waluyo, D. D. Fong, A. Jarry, E. J. Crumlin, S. L. Hellstrom, Y.-M. Chiang, B. Yildiz, Chem. Mater. 2018, 30, 6259. | |
dc.identifier.citedreference | K. Park, B. C. Yu, J. W. Jung, Y. Li, W. Zhou, H. Gao, S. Son, Chem. Mater. 2016, 28, 8051. | |
dc.identifier.citedreference | S. Afyon, F. Krumeich, J. L. Rupp, J. Mater. Chem. A 2015, 3, 18636. | |
dc.identifier.citedreference | Y. Zhu, X. He, Y. Mo, J. Mater. Chem. A 2016, 4, 3253. | |
dc.identifier.citedreference | Y. Ren, T. Liu, Y. Shen, Y. Lin, C. W. Nan, J. Materiomics 2016, 2, 256. | |
dc.identifier.citedreference | A. Bhim, S. Laha, J. Gopalakrishnan, S. Natarajan, Chem. - Asian J. 2017, 12, 2734. | |
dc.identifier.citedreference | K. Kusaka, K. Hagiya, M. Ohmasa, Y. Okano, M. Mukai, K. Iishi, N. Haga, Phys. Chem. Miner. 2001, 28, 150. | |
dc.identifier.citedreference | D. L. Wood, J. P. Remeika, J. Chem. Phys. 1967, 46, 3595. | |
dc.identifier.citedreference | D. Rettenwander, P. Blaha, R. Laskowski, K. Schwarz, P. Bottke, M. Wilkening, C. A. Geiger, G. Amthauer, Chem. Mater. 2014, 26, 2617. | |
dc.identifier.citedreference | B. Karasulu, S. P. Emge, M. F. Groh, C. P. Grey, A. J. Morris, J. Am. Chem. Soc. 2020, 142, 3132. | |
dc.identifier.citedreference | R. Wagner, G. J. Redhammer, D. Rettenwander, G. Tippelt, A. Welzl, S. Taibl, J. Fleig, A. Franz, W. Lottermoser, G. Amthauer, Chem. Mater. 2016, 28, 5943. | |
dc.identifier.citedreference | G. J. Redhammer, G. Tippelt, A. Portenkirchner, D. Rettenwander, Crystals 2021, 11, 721. | |
dc.identifier.citedreference | G. J. Redhammer, P. Badami, M. Meven, S. Ganschow, S. Berendts, G. Tippelt, D. Rettenwander, ACS Appl. Mater. Interfaces 2020, 13, 350. | |
dc.identifier.citedreference | J. Awaka, N. Kijima, H. Hayakawa, J. Akimoto, J. Solid State Chem. 2009, 182, 2046. | |
dc.identifier.citedreference | M. I. Demchuk, É. P. Dubrovina, N. V. Kuleshov, V. P. Mikhailov, V. A. Sandulenko, J. Appl. Spectrosc. 1990, 53, 1170. | |
dc.identifier.citedreference | M. C. Biesinger, B. P. Payne, A. P. Grosvenor, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, Appl. Surf. Sci. 2011, 257, 2717. | |
dc.identifier.citedreference | F. C. Larcht’e, J. L. Cahn, Acta Metall. 1982, 30, 1835. | |
dc.identifier.citedreference | D. Mazza, F. Abbatista, M. Vallino, G. Ivaldi, J. Less-Common Met. 1985, 106, 277. | |
dc.identifier.citedreference | T. Thompson, S. Yu, L. Williams, R. D. Schmidt, R. Garcia-Mendez, J. Wolfenstine, J. L. Allen, E. Kioupakis, D. J. Siegel, J. Sakamoto, ACS Energy Lett. 2017, 2, 462. | |
dc.identifier.citedreference | K. C. Santosh, R. C. Longo, K. Xiong, K. Cho, Solid State Ionics 2014, 261, 100. | |
dc.identifier.citedreference | A. M. Nolan, Y. Zhu, X. He, Q. Bai, Y. Mo, Joule 2018, 2, 2016. | |
dc.identifier.citedreference | C. Wang, K. Fu, S. P. Kammampata, D. W. McOwen, A. J. Samson, L. Zhang, G. T. Hitz, A. M. Nolan, E. D. Wachsman, Y. Mo, V. Thangadurai, Chem. Rev. 2020, 120, 4257. | |
dc.identifier.citedreference | M. Philipp, B. Gadermaier, P. Posch, I. Hanzu, S. Ganschow, M. Meven, R. Rettenwander, G. J. Redhammer, H. M. R. Wilkening, Adv. Mater. Interfaces 2020, 7, 2000450. | |
dc.identifier.citedreference | R. Inada, K. Kusakabe, T. Tanaka, S. Kudo, Y. Sakurai, Solid State Ionics 2014, 262, 568. | |
dc.identifier.citedreference | L. G. Harrison, Trans. Faraday Soc. 1961, 57, 1191. | |
dc.identifier.citedreference | Y. Mishin, C. Herzig, J. Bernardini, W. Gust, Int. Mater. Rev. 1997, 42, 155. | |
dc.identifier.citedreference | Y. Ren, E. D. Wachsman, J. Electrochem. Soc. 2022, 169, 040529. | |
dc.identifier.citedreference | P. S. Dobal, R. S. Katiyar, M. S. Tomar, A. Hidalgo, J. Mater. Res. 2001, 16, 1. | |
dc.identifier.citedreference | E. G. Gontier-Moya, G. Erdelyi, F. Moya, K. Freitag, Philos. Mag. A 2001, 81, 2665. | |
dc.identifier.citedreference | Bruker, Bruker AXS Inc, Madison, Wisconsin, USA, 2012. | |
dc.identifier.citedreference | G. M. Sheldrick, Acta Crystallogr. 2008, 64, 112. | |
dc.identifier.citedreference | L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849. | |
dc.identifier.citedreference | M. Schmid, H.-P. Steinrück, J. M. Gottfried, Surf. Interface Anal. 2014, 46, 505. | |
dc.identifier.citedreference | G. Kresse, J. Hafner, Phys. Rev. B 1993, 47, 558. | |
dc.identifier.citedreference | G. Kresse, J. Hafner, Phys. Rev. B 1994, 49, 285. | |
dc.identifier.citedreference | G. Kresse, J. Furthmüller, Phys. Rev. B 1996, 54, 11169. | |
dc.identifier.citedreference | P. E. Blochl, Phys. Rev. B 1994, 50, 17953. | |
dc.identifier.citedreference | J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 1996, 77, 3865. | |
dc.identifier.citedreference | J. Heyd, G. E. Scuseria, M. Ernzerhof, J. Chem. Phys. 2003, 118, 8207. | |
dc.identifier.citedreference | A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, G. E. Scuseria, J. Chem. Phys. 2006, 125, 224106. | |
dc.identifier.citedreference | V. Thangadurai, W. Weppner, J. Am. Ceram. Soc. 2005, 88, 411. | |
dc.identifier.citedreference | V. Thangadurai, H. Kaack, W. Weppner, J. Am. Ceram. Soc. 2003, 86, 437. | |
dc.identifier.citedreference | R. Murugan, V. Thangadurai, W. Weppner, Angew. Chem., Int. Ed. 2007, 46, 7778. | |
dc.identifier.citedreference | A. Banerjee, X. Wang, C. Fang, E. A. Wu, Y. S. Meng, Chem. Rev. 2020, 120, 6878. | |
dc.identifier.citedreference | K. V. Kravchyk, D. T. Karabay, M. V. Kovalenko, Sci. Rep. 2022, 12, 1177. | |
dc.identifier.citedreference | M. J. Wang, E. Kazyak, N. P. Dasgupta, J. Sakamoto, Joule 2021, 5, 1371. | |
dc.identifier.citedreference | K. Takada, N. Ohta, L. Zhang, X. Xu, B. T. Hang, T. Ohnishi, M. Osada, T. Sasaki, Solid State Ionics 2012, 225, 594. | |
dc.identifier.citedreference | K. Takada, Acta Mater. 2013, 61, 759. | |
dc.identifier.citedreference | Y. Ren, T. Danner, A. Moy, M. Finsterbusch, T. Hamann, J. Dippell, T. Fuchs, M. Müller, R. Hoft, A. Weber, L. A. Curtiss, Adv. Energy Mater. 2023, 13, 2201939. | |
dc.identifier.citedreference | X. Chen, J. Xie, X. Zhao, T. Zhu, Adv. Energy Sustainability Res. 2021, 2, 2000101. | |
dc.identifier.citedreference | A. Sakuda, A. Hayashi, M. Tatsumisagoi, Chem. Mater. 2010, 22, 949. | |
dc.identifier.citedreference | M. Ihrig, L. Y. Kuo, S. Lobe, A. M. Laptev, C. A. Lin, C. H. Tu, R. Ye, P. Kaghazchi, L. Cressa, S. Eswara, S. K. Lin, ACS Appl. Mater. Interfaces 2023, 15, 4101. | |
dc.identifier.citedreference | R. Koerver, I. Aygün, T. Leichtweiß, C. Dietrich, W. Zhang, J. O. Binder, P. Hartmann, W. G. Zeier, J. Janek, Chem. Mater. 2017, 29, 5574. | |
dc.identifier.citedreference | X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2017, 16, 572. | |
dc.identifier.citedreference | K. J. Kim, J. L. M. Rup, Energy Environ. Sci. 2020, 13, 4930. | |
dc.identifier.citedreference | J. Sastre, X. Chen, A. Aribia, A. N. Tiwari, Y. E. Romanyuk, ACS Appl. Mater. Interfaces 2020, 12, 36196. | |
dc.identifier.citedreference | K. H. Kim, Y. Iriyama, K. Yamamoto, S. Kumazaki, T. Asaka, K. Tanabe, C. A. Fisher, T. Hirayama, R. Murugan, Z. Ogumi, J. Power Sources 2011, 196, 764. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.