Show simple item record

Multi-layer clustering-based residual sparsifying transform for low-dose CT image reconstruction

dc.contributor.authorChen, Ling
dc.contributor.authorYang, Xikai
dc.contributor.authorHuang, Zhishen
dc.contributor.authorLong, Yong
dc.contributor.authorRavishankar, Saiprasad
dc.date.accessioned2023-11-06T16:36:15Z
dc.date.available2024-11-06 11:36:13en
dc.date.available2023-11-06T16:36:15Z
dc.date.issued2023-10
dc.identifier.citationChen, Ling; Yang, Xikai; Huang, Zhishen; Long, Yong; Ravishankar, Saiprasad (2023). "Multi-layer clustering-based residual sparsifying transform for low-dose CT image reconstruction." Medical Physics 50(10): 6096-6117.
dc.identifier.issn0094-2405
dc.identifier.issn2473-4209
dc.identifier.urihttps://hdl.handle.net/2027.42/191395
dc.description.abstractPurposeThe recently proposed sparsifying transform (ST) models incur low computational cost and have been applied to medical imaging. Meanwhile, deep models with nested network structure reveal great potential for learning features in different layers. In this study, we propose a network-structured ST learning approach for X-ray computed tomography (CT), which we refer to as multi-layer clustering-based residual sparsifying transform (MCST) learning. The proposed MCST scheme learns multiple different unitary transforms in each layer by dividing each layer’s input into several classes. We apply the MCST model to low-dose CT (LDCT) reconstruction by deploying the learned MCST model into the regularizer in penalized weighted least squares (PWLS) reconstruction.MethodsThe proposed MCST model combines a multi-layer sparse representation structure with multiple clusters for the features in each layer that are modeled by a rich collection of transforms. We train the MCST model in an unsupervised manner via a block coordinate descent (BCD) algorithm. Since our method is patch-based, the training can be performed with a limited set of images. For CT image reconstruction, we devise a novel algorithm called PWLS-MCST by integrating the pre-learned MCST signal model with PWLS optimization.ResultsWe conducted LDCT reconstruction experiments on XCAT phantom data, Numerical Mayo Clinical CT dataset and “LDCT image and projection dataset” (Clinical LDCT dataset). We trained the MCST model with two (or three) layers and with five clusters in each layer. The learned transforms in the same layer showed rich features while additional information is extracted from representation residuals. Our simulation results and clinical results demonstrate that PWLS-MCST achieves better image reconstruction quality than the conventional filtered back-projection (FBP) method and PWLS with edge-preserving (EP) regularizer. It also outperformed recent advanced methods like PWLS with a learned multi-layer residual sparsifying transform (MARS) prior and PWLS with a union of learned transforms (ULTRA), especially for displaying clear edges and preserving subtle details.ConclusionsIn this work, a multi-layer sparse signal model with a nested network structure is proposed. We refer this novel model as the MCST model that exploits multi-layer residual maps to sparsify the underlying image and clusters the inputs in each layer for accurate sparsification. We presented a new PWLS framework with a learned MCST regularizer for LDCT reconstruction. Experimental results show that the proposed PWLS-MCST provides clearer reconstructions than several baseline methods. The code for PWLS-MCST is released at https://github.com/Xikai97/PWLS-MCST.
dc.publisherWiley Periodicals, Inc.
dc.publisherIEEE
dc.subject.othersparsifying transform learning
dc.subject.otherstatistical image reconstruction
dc.subject.otherlow-dose CT
dc.titleMulti-layer clustering-based residual sparsifying transform for low-dose CT image reconstruction
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191395/1/mp16645_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191395/2/mp16645.pdf
dc.identifier.doi10.1002/mp.16645
dc.identifier.sourceMedical Physics
dc.identifier.citedreferenceSchönemann PH. A generalized solution of the orthogonal procrustes problem. Psychometrika. 1966; 31: 1 - 10.
dc.identifier.citedreferenceVanika S, Angshul M. Majorization minimization technique for optimally solving deep dictionary learning. Neural Process Lett. 2018; 47: 799 - 814.
dc.identifier.citedreferenceRavishankar S, Wohlberg B. Learning multi-layer transform models. In: Allerton Conference on Communication, Control, and Computing. 2018: 160 - 165.
dc.identifier.citedreferenceWen B, Ravishankar S, Bresler Y. Structured overcomplete sparsifying transform learning with convergence guarantees and applications. Int J Comput Vis. 2015; 114: 137 - 167.
dc.identifier.citedreferenceZheng X, Ravishankar S, Long Y, Fessler JA. PWLS-ULTRA: An efficient clustering and learning-based approach for low-dose 3D CT image reconstruction. IEEE Trans Med Imaging. 2018; 37: 1498 - 1510.
dc.identifier.citedreferenceYang X, Long Y, Ravishankar S. Multilayer residual sparsifying transform (MARS) model for low-dose CT image reconstruction. Med Phys. 2021; 48: 6388 - 6400.
dc.identifier.citedreferenceThibault J-B, Sauer K, Bouman C, Hsieh J. A three-dimensional statistical approach to improved image quality for multi-slice helical CT. Med Phys. 2007; 34: 4526 - 4544.
dc.identifier.citedreferenceCho JH, Fessler JA. Regularization designs for uniform spatial resolution and noise properties in statistical image reconstruction for 3D X-ray CT. IEEE Trans Med Imaging. 2015; 34: 678 - 689.
dc.identifier.citedreferencePfister L, Bresler Y. Model-based iterative tomographic reconstruction with adaptive sparsifying transforms. In: Proceedings of the SPIE. Vol 9020. SPIE; 2014: 125 - 135.
dc.identifier.citedreferencePfister L, Bresler Y. Tomographic reconstruction with adaptive sparsifying transforms. In: Proceedings IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). IEEE; 2014: 6914 - 6918.
dc.identifier.citedreferencePfister L, Bresler Y. Adaptive sparsifying transforms for iterative tomographic reconstruction. In: Proceedings of the 3rd International Meeting on Image Formation in X-ray Computed Tomography. 2014: 107 - 110.
dc.identifier.citedreferenceChun IY, Zheng X, Long Y, Fessler JA. Efficient sparse-view X-ray CT reconstruction using ℓ 1 regularization with learned sparsifying transform. In: Proceedings of the 14th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. 2017: 115 – 119.
dc.identifier.citedreferenceThibault JB, Bouman CA, Sauer KD, Hsieh J. A recursive filter for noise reduction in statistical iterative tomographic imaging. In: Proceedings of SPIE. Vol 6065. 2006: 264 - 273.
dc.identifier.citedreferenceXu Q, Yu H, Mou X, Zhang L, Hsieh J, Wang G. Low-dose X-ray CT reconstruction via dictionary learning. IEEE Trans Med Imaging. 2012; 31: 1682 - 1697.
dc.identifier.citedreferenceSegars WP, Mahesh M, Beck TJ, Frey EC, Tsui BMW. Realistic CT simulation using the 4D XCAT phantom. Med Phys. 2008; 35: 3800 - 3808.
dc.identifier.citedreferenceMcCollough C. TU-FG-207A-04: Overview of the low dose CT grand challenge. Med Phys. 2016; 43: 3759 - 60.
dc.identifier.citedreferenceDing Q, Long Y, Zhang X, Fessler JA. Modeling mixed Poisson-Gaussian noise in statistical image reconstruction for X-ray CT. In: Proceedings of the 4th International Meeting on Image Formation in X-ray Computed Tomography. 2016: 399 - 402.
dc.identifier.citedreferenceFessler JA. Michigan Image Reconstruction Toolbox, available at http://web.eecs.umich.edu/fessler/irt/irt
dc.identifier.citedreferenceNien H, Fessler JA. Relaxed linearized algorithms for faster X-ray CT image reconstruction. IEEE Trans Med Imaging. 2016; 35: 1090 - 1098.
dc.identifier.citedreferenceYe S, Ravishankar S, Long Y, Fessler JA. SPULTRA: Low-dose CT image reconstruction with joint statistical and learned image models. IEEE Trans Med Imaging. 2020; 39: 729 - 741.
dc.identifier.citedreferenceYe S, Li Z, McCann MT, Long Y, Ravishankar S. Unified supervised-unsupervised (SUPER) learning for X-Ray CT image reconstruction. IEEE Trans Med Imaging. 2021; 40: 2986 - 3001.
dc.identifier.citedreferenceMcCollough C, Chen B, Holmes D, et al. Low Dose CT Image and Projection Data (LDCT-and-Projection-data) (Version 5). Med Phys. 2020; 48: 902 - 911.
dc.identifier.citedreferenceWagner F, Thies M, Pfaff L, et al. On the Benefit of Dual-domain Denoising in a Self-Supervised Low-dose CT Setting. arXiv preprint arXiv:2211.01111. 2022.
dc.identifier.citedreferenceRonchetti M, TorchRadon: Fast Differentiable Routines for Computed Tomography. arXiv preprint arXiv:2009.14788. 2020.
dc.identifier.citedreferenceFeldkamp LA, Davis LC, Kress JW. Practical cone beam algorithm. J Opt Soc Am A. 1984; 1: 612 - 619.
dc.identifier.citedreferenceHuang Z, Ye S, McCann M, Ravishankar S. Model-based Reconstruction with Learning: From Unsupervised to Supervised and Beyond. 2021 arXiv pre-print arXiv:2103.14258. 2021.
dc.identifier.citedreferenceSauer K, Bouman C. A local update strategy for iterative reconstruction from projections. IEEE Trans Signal Process. 1993; 41: 534 - 548.
dc.identifier.citedreferencePati Y, Rezaiifar R, Krishnaprasad P. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. In: Asilomar Conference Signals Syst Comput. Vol 1. 1993: 40 - 44.
dc.identifier.citedreferenceElad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans Image Process. 2006; 15: 3736 - 3745.
dc.identifier.citedreferenceYang J, Wright J, Huang TS, Ma Y. Image super-resolution via sparse representation. IEEE Trans Image Process. 2010; 19: 2861 - 2873.
dc.identifier.citedreferenceMairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Trans Image Process. 2008; 17: 53 – 69.
dc.identifier.citedreferenceZhang Y, Mou X, Wang G, Yu H. Tensor- based dictionary learning for spectral CT reconstruction. IEEE Trans Med Imaging. 2017; 36: 142 - 154.
dc.identifier.citedreferenceAharon M, Elad M, Bruckstein A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans Signal Process. 2006; 54: 4311 - 4322.
dc.identifier.citedreferenceRubinstein R, Peleg T, Elad M. Analysis K-SVD: a dictionary-learning algorithm for the analysis sparse model. IEEE Trans Signal Process. 2013; 61: 661 - 677.
dc.identifier.citedreferenceMehrdad Y, Sangnam N, Rémi G, Mike DE. Constrained overcomplete analysis operator learning for cosparse signal modelling. IEEE Trans Signal Process. 2013; 61: 2341 - 2355.
dc.identifier.citedreferenceRavishankar S, Bresler Y. ℓ 0 Sparsifying transform learning with efficient optimal updates and convergence guarantees. IEEE Trans Signal Process. 2015; 63: 2389 - 2404.
dc.identifier.citedreferenceRavishankar S, Bresler Y. Learning sparsifying transforms. IEEE Trans Signal Process. 2013; 61: 1072 - 1086.
dc.identifier.citedreferenceRavishankar S, Bresler Y. Learning doubly sparse transforms for images. IEEE Trans Image Process. 2013; 22: 4598 - 4612.
dc.identifier.citedreferenceRavishankar S, Bresler Y, Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to magnetic resonance imaging. SIAM J Imaging Sci. 2015; 8: 2519 - 2557.
dc.identifier.citedreferenceJin KH, McCann MT, Froustey E, Unser M. Deep convolutional neural network for inverse problems in imaging. IEEE Trans Image Process. 2017; 26: 4509 - 4522.
dc.identifier.citedreferenceChen H, Zhang Y, Kalra MK, et al. Low-dose CT with a residual encoder-decoder convolutional neural network. IEEE Trans Med Imaging. 2017; 36: 2524 - 2535.
dc.identifier.citedreferenceHao T, Heng W, Wei X, et al. Deep micro-dictionary learning and coding network. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE; 2019: 386 - 395.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.