Cohomology of cluster varieties II: Acyclic case
dc.contributor.author | Lam, Thomas | |
dc.contributor.author | Speyer, David E | |
dc.date.accessioned | 2023-12-04T20:24:45Z | |
dc.date.available | 2025-01-04 15:24:44 | en |
dc.date.available | 2023-12-04T20:24:45Z | |
dc.date.issued | 2023-12 | |
dc.identifier.citation | Lam, Thomas; Speyer, David E (2023). "Cohomology of cluster varieties II: Acyclic case." Journal of the London Mathematical Society 108(6): 2377-2414. | |
dc.identifier.issn | 0024-6107 | |
dc.identifier.issn | 1469-7750 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/191580 | |
dc.description.abstract | In the previous work, we initiated the study of the cohomology of locally acyclic cluster varieties. In the present work, we show that the mixed Hodge structure and point counts of acyclic cluster varieties are essentially determined by the combinatorics of the independent sets of the quiver. We use this to show that the mixed Hodge numbers of acyclic cluster varieties of really full rank satisfy a strong vanishing condition. | |
dc.publisher | Cambridge University Press | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.title | Cohomology of cluster varieties II: Acyclic case | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Mathematics | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191580/1/jlms12809_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191580/2/jlms12809.pdf | |
dc.identifier.doi | 10.1112/jlms.12809 | |
dc.identifier.source | Journal of the London Mathematical Society | |
dc.identifier.citedreference | R. Ehrenborg and G. Hetyei, The topology of the independence complex, European J. Combin. 27 ( 2006 ), no. 6, 906 – 923. | |
dc.identifier.citedreference | C. Fraser, Quasi-homomorphisms of cluster algebras, Adv. in Appl. Math. 81 ( 2016 ), 40 – 77. | |
dc.identifier.citedreference | S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 ( 2002 ), no. 2, 497 – 529. | |
dc.identifier.citedreference | N. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka, Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge, 2016, ix+194 pp. | |
dc.identifier.citedreference | N. Arkani-Hamed, S. He, and T. Lam, Cluster configuration spaces of finite type, SIGMA 17 ( 2021 ), 092, 41 p. | |
dc.identifier.citedreference | A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 ( 2005 ), no. 1, 1 – 52. | |
dc.identifier.citedreference | P. Galashin and T. Lam, Positroids, knots, and q, t $q,t$ -Catalan numbers, arXiv:2012.09745, 2020. | |
dc.identifier.citedreference | M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, vol. 167, American Mathematical Society, Providence, RI, 2010, xvi+246 pp. | |
dc.identifier.citedreference | J. Haglund, The q, t $q,t$ -Catalan numbers and the space of diagonal harmonics. With an appendix on the combinatorics of Macdonald polynomials, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008, viii+167 pp. | |
dc.identifier.citedreference | A. Huang, B. H. Lian, and X. Zhu, Period integrals and the Riemann-Hilbert correspondence, J. Differential Geom. 104 ( 2016 ), no. 2, 325 – 369. | |
dc.identifier.citedreference | D. N. Kozlov, Complexes of directed trees, J. Combin. Theory Ser. A 88 ( 1999 ), no. 1, 112 – 122. | |
dc.identifier.citedreference | T. Lam and D. Speyer, Cohomology of cluster varieties. I. Locally acyclic case, Algebra Number Theory. 16 ( 2022 ), no. 1, 179 – 230. | |
dc.identifier.citedreference | T. Lam and N. Templier, The mirror conjecture for minuscule flag varieties, Duke Math J., to appear. | |
dc.identifier.citedreference | G. Muller, Locally acyclic cluster algebras, Adv. Math. 233 ( 2013 ), 207 – 247. | |
dc.identifier.citedreference | G. Muller and D. E. Speyer, Cluster algebras of Grassmannians are locally acyclic, Proc. Amer. Math. Soc. 144 ( 2016 ), no. 8, 3267 – 3281. | |
dc.identifier.citedreference | M. Marietti and D. Testa, Cores of simplicial complexes, arXiv:math/0703351, 2007. | |
dc.identifier.citedreference | M. Marietti and D. Testa, Cores of simplicial complexes, Discrete Comput. Geom. 40 ( 2008 ), no. 3, 444 – 468. | |
dc.identifier.citedreference | D. Petersen, A spectral sequence for stratified spaces and configuration spaces of points, Geom. Topol. 21 ( 2017 ), no. 4, 2527 – 2555. Grenzgebiete. 3. Folge., vol. 52, Springer, Berlin, 2008. | |
dc.identifier.citedreference | D. E. Speyer, An infinitely generated upper cluster algebra, arXiv:1305.6867, 2013. | |
dc.identifier.citedreference | The Stacks project, 2021, https://stacks.math.columbia.edu. | |
dc.identifier.citedreference | D. Arapura, The Leray spectral sequence is motivic, Invent. Math. 160 ( 2005 ), no. 3, 567 – 589. | |
dc.identifier.citedreference | N. Arkani-Hamed, Y. Bai, and T. Lam, Positive geometries and canonical forms, J. High Energy Phys. 2017 ( 2017 ), no. 39. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.