Show simple item record

Cohomology of cluster varieties II: Acyclic case

dc.contributor.authorLam, Thomas
dc.contributor.authorSpeyer, David E
dc.date.accessioned2023-12-04T20:24:45Z
dc.date.available2025-01-04 15:24:44en
dc.date.available2023-12-04T20:24:45Z
dc.date.issued2023-12
dc.identifier.citationLam, Thomas; Speyer, David E (2023). "Cohomology of cluster varieties II: Acyclic case." Journal of the London Mathematical Society 108(6): 2377-2414.
dc.identifier.issn0024-6107
dc.identifier.issn1469-7750
dc.identifier.urihttps://hdl.handle.net/2027.42/191580
dc.description.abstractIn the previous work, we initiated the study of the cohomology of locally acyclic cluster varieties. In the present work, we show that the mixed Hodge structure and point counts of acyclic cluster varieties are essentially determined by the combinatorics of the independent sets of the quiver. We use this to show that the mixed Hodge numbers of acyclic cluster varieties of really full rank satisfy a strong vanishing condition.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.titleCohomology of cluster varieties II: Acyclic case
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMathematics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191580/1/jlms12809_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191580/2/jlms12809.pdf
dc.identifier.doi10.1112/jlms.12809
dc.identifier.sourceJournal of the London Mathematical Society
dc.identifier.citedreferenceR. Ehrenborg and G. Hetyei, The topology of the independence complex, European J. Combin. 27 ( 2006 ), no. 6, 906 – 923.
dc.identifier.citedreferenceC. Fraser, Quasi-homomorphisms of cluster algebras, Adv. in Appl. Math. 81 ( 2016 ), 40 – 77.
dc.identifier.citedreferenceS. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 ( 2002 ), no. 2, 497 – 529.
dc.identifier.citedreferenceN. Arkani-Hamed, J. Bourjaily, F. Cachazo, A. Goncharov, A. Postnikov, and J. Trnka, Grassmannian geometry of scattering amplitudes, Cambridge University Press, Cambridge, 2016, ix+194 pp.
dc.identifier.citedreferenceN. Arkani-Hamed, S. He, and T. Lam, Cluster configuration spaces of finite type, SIGMA 17 ( 2021 ), 092, 41 p.
dc.identifier.citedreferenceA. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J. 126 ( 2005 ), no. 1, 1 – 52.
dc.identifier.citedreferenceP. Galashin and T. Lam, Positroids, knots, and q, t $q,t$ -Catalan numbers, arXiv:2012.09745, 2020.
dc.identifier.citedreferenceM. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, vol. 167, American Mathematical Society, Providence, RI, 2010, xvi+246 pp.
dc.identifier.citedreferenceJ. Haglund, The q, t $q,t$ -Catalan numbers and the space of diagonal harmonics. With an appendix on the combinatorics of Macdonald polynomials, University Lecture Series, vol. 41, American Mathematical Society, Providence, RI, 2008, viii+167 pp.
dc.identifier.citedreferenceA. Huang, B. H. Lian, and X. Zhu, Period integrals and the Riemann-Hilbert correspondence, J. Differential Geom. 104 ( 2016 ), no. 2, 325 – 369.
dc.identifier.citedreferenceD. N. Kozlov, Complexes of directed trees, J. Combin. Theory Ser. A 88 ( 1999 ), no. 1, 112 – 122.
dc.identifier.citedreferenceT. Lam and D. Speyer, Cohomology of cluster varieties. I. Locally acyclic case, Algebra Number Theory. 16 ( 2022 ), no. 1, 179 – 230.
dc.identifier.citedreferenceT. Lam and N. Templier, The mirror conjecture for minuscule flag varieties, Duke Math J., to appear.
dc.identifier.citedreferenceG. Muller, Locally acyclic cluster algebras, Adv. Math. 233 ( 2013 ), 207 – 247.
dc.identifier.citedreferenceG. Muller and D. E. Speyer, Cluster algebras of Grassmannians are locally acyclic, Proc. Amer. Math. Soc. 144 ( 2016 ), no. 8, 3267 – 3281.
dc.identifier.citedreferenceM. Marietti and D. Testa, Cores of simplicial complexes, arXiv:math/0703351, 2007.
dc.identifier.citedreferenceM. Marietti and D. Testa, Cores of simplicial complexes, Discrete Comput. Geom. 40 ( 2008 ), no. 3, 444 – 468.
dc.identifier.citedreferenceD. Petersen, A spectral sequence for stratified spaces and configuration spaces of points, Geom. Topol. 21 ( 2017 ), no. 4, 2527 – 2555. Grenzgebiete. 3. Folge., vol. 52, Springer, Berlin, 2008.
dc.identifier.citedreferenceD. E. Speyer, An infinitely generated upper cluster algebra, arXiv:1305.6867, 2013.
dc.identifier.citedreferenceThe Stacks project, 2021, https://stacks.math.columbia.edu.
dc.identifier.citedreferenceD. Arapura, The Leray spectral sequence is motivic, Invent. Math. 160 ( 2005 ), no. 3, 567 – 589.
dc.identifier.citedreferenceN. Arkani-Hamed, Y. Bai, and T. Lam, Positive geometries and canonical forms, J. High Energy Phys. 2017 ( 2017 ), no. 39.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.