Magnetic Field Draping in Induced Magnetospheres: Evidence From the MAVEN Mission to Mars
dc.contributor.author | Azari, A. R. | |
dc.contributor.author | Abrahams, E. | |
dc.contributor.author | Sapienza, F. | |
dc.contributor.author | Mitchell, D. L. | |
dc.contributor.author | Biersteker, J. | |
dc.contributor.author | Xu, S. | |
dc.contributor.author | Bowers, C. | |
dc.contributor.author | Pérez, F. | |
dc.contributor.author | DiBraccio, G. A. | |
dc.contributor.author | Dong, Y. | |
dc.contributor.author | Curry, S. | |
dc.date.accessioned | 2023-12-04T20:25:44Z | |
dc.date.available | 2024-12-04 15:25:32 | en |
dc.date.available | 2023-12-04T20:25:44Z | |
dc.date.issued | 2023-11 | |
dc.identifier.citation | Azari, A. R.; Abrahams, E.; Sapienza, F.; Mitchell, D. L.; Biersteker, J.; Xu, S.; Bowers, C.; Pérez, F. ; DiBraccio, G. A.; Dong, Y.; Curry, S. (2023). "Magnetic Field Draping in Induced Magnetospheres: Evidence From the MAVEN Mission to Mars." Journal of Geophysical Research: Space Physics 128(11): n/a-n/a. | |
dc.identifier.issn | 2169-9380 | |
dc.identifier.issn | 2169-9402 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/191595 | |
dc.description.abstract | The Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been orbiting Mars since 2014 and now has over 10,000 orbits which we use to characterize Mars’ dynamic space environment. Through global field line tracing with MAVEN magnetic field data we find an altitude dependent draping morphology that differs from expectations of induced magnetospheres in the vertical (Z^ $hat{Z}$ Mars Sun-state, MSO) direction. We quantify this difference from the classical picture of induced magnetospheres with a Bayesian multiple linear regression model to predict the draped field as a function of the upstream interplanetary magnetic field (IMF), remanent crustal fields, and a previously underestimated induced effect. From our model we conclude that unexpected twists in high altitude dayside draping (>800 km) are a result of the IMF component in the ±X^ $pm hat{X}$ MSO direction. We propose that this is a natural outcome of current theories of induced magnetospheres but has been underestimated due to approximations of the IMF as solely ±Y^ $pm hat{Y}$ directed. We additionally estimate that distortions in low altitude (<800 km) dayside draping along Z^ $hat{Z}$ are directly related to remanent crustal fields. We show dayside draping traces down tail and previously reported inner magnetotail twists are likely caused by the crustal field of Mars, while the outer tail morphology is governed by an induced response to the IMF direction. We conclude with an updated understanding of induced magnetospheres which details dayside draping for multiple directions of the incoming IMF and discuss the repercussions of this draping for magnetotail morphology.Plain Language SummaryMars presents a dynamic and complex obstacle to the solar wind, a supersonic flow of magnetized plasma from the Sun. This complexity is due to Mars’ ionized upper atmosphere, or ionosphere, and a patchwork of strong crustal magnetic fields that rotate with the planet. These factors perturb how the solar wind magnetic field drapes around Mars. The solar wind magnetic field is most often approximated as either eastward or westward directed as referenced by Mars’ longitude. For planets without internally generated magnetic fields like Venus it is expected that the solar wind magnetic field would drape symmetrically around the ionosphere. However, spacecraft measurements have revealed a more complicated draping pattern at Mars including northward and southward directed draping. We show that these alterations can be explained by combination of crustal magnetic fields at low altitudes and by a previously underestimated effect of induced magnetospheres at high altitudes. These dayside draping alterations propagate globally throughout the Mars system, potentially explaining previously observed alterations in expected magnetotail observations. We conclude with an updated guide for how solar wind magnetic field draping occurs around induced obstacles and suggest that this is a unifying phenomenon of planetary and solar wind interactions.Key PointsWe quantify Mars’ induced magnetic field response as compared to responses from the intrinsic crustal and direct solar wind magnetic fieldsWe expand induced magnetosphere theory after showing twisted dayside fields depend on an underestimated induced effect and crustal fieldsTwisted dayside draping is a precursor to, and aligns with, observations of the twisted magnetotail at Mars | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Philosophical Transactions of the Royal Society of London | |
dc.subject.other | Gaussian process regression | |
dc.subject.other | induced magnetospheres | |
dc.subject.other | hybrid magnetospheres | |
dc.subject.other | planetary science | |
dc.subject.other | Bayesian methods | |
dc.subject.other | data visualization | |
dc.title | Magnetic Field Draping in Induced Magnetospheres: Evidence From the MAVEN Mission to Mars | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Astronomy and Astrophysics | |
dc.subject.hlbsecondlevel | Space Sciences and Engineering | |
dc.subject.hlbtoplevel | Science | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191595/1/jgra58137.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191595/2/jgra58137_am.pdf | |
dc.identifier.doi | 10.1029/2023JA031546 | |
dc.identifier.source | Journal of Geophysical Research: Space Physics | |
dc.identifier.citedreference | Ramstad, R., Brain, D. A., Dong, Y., Espley, J., Halekas, J., & Jakosky, B. ( 2020 ). The global current systems of the Martian induced magnetosphere. Nature Astronomy, 4 ( 10 ), 979 – 985. https://doi.org/10.1038/s41550-020-1099-y | |
dc.identifier.citedreference | Liemohn, M. W., Xu, S., Dong, C., Bougher, S. W., Johnson, B. C., Ilie, R., & De Zeeuw, D. L. ( 2017 ). Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet. Journal of Geophysical Research: Space Physics, 122 ( 6 ), 6397 – 6414. https://doi.org/10.1002/2016JA023707 | |
dc.identifier.citedreference | Luhmann, J. G. ( 1986 ). The solar wind interaction with Venus. Space Science Reviews, 44 ( 3–4 ), 241 – 306. https://doi.org/10.1007/BF00200818 | |
dc.identifier.citedreference | Luhmann, J. G. ( 1992 ). Comparative studies of the solar wind interaction with weakly magnetized planets. Advances in Space Research, 12 ( 12 ), 191 – 203. https://doi.org/10.1016/0273-1177(92)90331-Q | |
dc.identifier.citedreference | Luhmann, J. G., & Brace, L. H. ( 1991 ). Near-Mars space. Reviews of Geophysics, 29 ( 2 ), 121 – 140. https://doi.org/10.1029/91RG00066 | |
dc.identifier.citedreference | Luhmann, J. G., & Cravens, T. E. ( 1991 ). Magnetic fields in the ionosphere of Venus. Space Science Reviews, 55 ( 2 ), 201 – 274. https://doi.org/10.1007/BF00177138 | |
dc.identifier.citedreference | Luhmann, J. G., & Russell, C. T. ( 1997 ). Venus: Magnetic field and magnetosphere. In Encyclopedia of planetary science (pp. 905 – 907 ). Springer. https://doi.org/10.1007/1-4020-4520-4_440 | |
dc.identifier.citedreference | Marquette, M. L., Lillis, R. J., Halekas, J. S., Luhmann, J. G., Gruesbeck, J. R., & Espley, J. R. ( 2018 ). Autocorrelation study of solar wind plasma and IMF properties as measured by the MAVEN spacecraft. Journal of Geophysical Research: Space Physics, 123 ( 4 ), 2493 – 2512. https://doi.org/10.1002/2018JA025209 | |
dc.identifier.citedreference | McComas, D. J., Spence, H. E., Russell, C. T., & Saunders, M. A. ( 1986 ). The average magnetic field draping and consistent plasma properties of the Venus magnetotail. Journal of Geophysical Research, 91 ( A7 ), 7939 – 7953. https://doi.org/10.1029/JA091iA07p07939 | |
dc.identifier.citedreference | Michotte de Welle, B., Aunai, N., Nguyen, G., Lavraud, B., Génot, V., Jeandet, A., & Smets, R. ( 2022 ). Global three-dimensional draping of magnetic field lines in Earth’s magnetosheath from in-situ spacecraft measurements. Journal of Geophysical Research: Space Physics, 127 ( 12 ), e2022JA030996. https://doi.org/10.1029/2022JA030996 | |
dc.identifier.citedreference | Nagy, A., Winterhalter, D., Sauer, K., Cravens, T., Brecht, S., Mazelle, C., et al. ( 2004 ). The plasma environment of Mars. Space Science Reviews, 111 ( 1/2 ), 33 – 114. https://doi.org/10.1023/B:SPAC.0000032718.47512.92 | |
dc.identifier.citedreference | NASA PDS. ( 2022 ). MAVEN MAG calibrated data bundle [Dataset]. NASA. https://doi.org/10.17189/1414178 | |
dc.identifier.citedreference | Parker, E. N. ( 1958 ). Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal, 128, 664. https://doi.org/10.1086/146579 | |
dc.identifier.citedreference | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. ( 2011 ). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825 – 2830. | |
dc.identifier.citedreference | Pitkänen, T., Hamrin, M., Kullen, A., Maggiolo, R., Karlsson, T., Nilsson, H., & Norqvist, P. ( 2016 ). Response of magnetotail twisting to variations in IMF By: A THEMIS case study 1–2 January 2009. Geophysical Research Letters, 43 ( 15 ), 7822 – 7830. https://doi.org/10.1002/2016GL070068 | |
dc.identifier.citedreference | Plotly Technologies Inc. ( 2015 ). Collaborative data science. Plotly Technologies Inc. Retrieved from https://plot.ly | |
dc.identifier.citedreference | Rasmussen, C. E., & Williams, C. K. I. ( 2006 ). Gaussian processes for machine learning. The MIT Press. | |
dc.identifier.citedreference | Romanelli, N., Bertucci, C., Gómez, D., & Mazelle, C. ( 2015 ). Dependence of the location of the Martian magnetic lobes on the interplanetary magnetic field direction: Observations from mars global surveyor. Journal of Geophysical Research: Space Physics, 120 ( 9 ), 7737 – 7747. https://doi.org/10.1002/2015JA021359 | |
dc.identifier.citedreference | Romanelli, N., DiBraccio, G. A., Slavin, J., Bowers, C., & Weber, T. ( 2022 ). The search for magnetotail twisting at Mercury: Comparing MESSENGER observations with the terrestrial case. Geophysical Research Letters, 49 ( 24 ), e2022GL101643. https://doi.org/10.1029/2022GL101643 | |
dc.identifier.citedreference | Rong, Z. J., Barabash, S., Futaana, Y., Stenberg, G., Zhang, T. L., Wan, W. X., et al. ( 2014 ). Morphology of magnetic field in near-Venus magnetotail: Venus express observations. Journal of Geophysical Research: Space Physics, 119 ( 11 ), 8838 – 8847. https://doi.org/10.1002/2014JA020461 | |
dc.identifier.citedreference | Rong, Z. J., Stenberg, G., Wei, Y., Chai, L. H., Futaana, Y., Barabash, S., et al. ( 2016 ). Is the flow-aligned component of IMF really able to impact the magnetic field structure of Venusian magnetotail? Journal of Geophysical Research: Space Physics, 121 ( 11 ), 10978 – 10993. https://doi.org/10.1002/2016JA022413 | |
dc.identifier.citedreference | Ruhunusiri, S., Halekas, J. S., Espley, J. R., Eparvier, F., Brain, D., Mazelle, C., et al. ( 2018 ). An artificial neural network for inferring solar wind proxies at Mars. Geophysical Research Letters, 45 ( 20 ), 10855 – 10865. https://doi.org/10.1029/2018GL079282 | |
dc.identifier.citedreference | Salvatier, J., Wiecki, T., & Fonnesbeck, C. ( 2016 ). Probabilistic programming in Python using PyMC3. PeerJ Computer Science, 2, e55. https://doi.org/10.7717/peerj-cs.55 | |
dc.identifier.citedreference | Saunders, M. A., & Russell, C. T. ( 1986 ). Average dimension and magnetic structure of the distant Venus magnetotail. Journal of Geophysical Research, 91 ( A5 ), 5589 – 5604. https://doi.org/10.1029/JA091iA05p05589 | |
dc.identifier.citedreference | Swinbank, R., & Purser, J. R. ( 2006 ). Fibonacci grids: A novel approach to global modelling. Quarterly Journal of the Royal Meteorological Society, 132 ( 619 ), 1769 – 1793. https://doi.org/10.1256/qj.05.227 | |
dc.identifier.citedreference | Thrane, E., & Talbot, C. ( 2019 ). An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models (Vol. 36 ). Publications of the Astronomical Society of Australia. https://doi.org/10.1017/pasa.2019.2. e010 | |
dc.identifier.citedreference | Weber, T., Brain, D., Xu, S., Mitchell, D., Espley, J., Mazelle, C., et al. ( 2021 ). Martian crustal field influence on O + and O 2 + escape as measured by MAVEN. Journal of Geophysical Research: Space Physics, 126 ( 8 ), e2021JA029234. https://doi.org/10.1029/2021JA029234 | |
dc.identifier.citedreference | Wilkinson, D. J. ( 2007 ). Bayesian methods in bioinformatics and computational systems biology. Briefings in Bioinformatics, 8 ( 2 ), 109 – 116. https://doi.org/10.1093/bib/bbm007 | |
dc.identifier.citedreference | Withers, P. ( 2009 ). A review of observed variability in the dayside ionosphere of Mars. Advances in Space Research, 44 ( 3 ), 277 – 307. https://doi.org/10.1016/j.asr.2009.04.027 | |
dc.identifier.citedreference | Withers, P., Flynn, C. L., Vogt, M. F., Mayyasi, M., Mahaffy, P., Benna, M., et al. ( 2019 ). Mars’s dayside upper ionospheric composition is affected by magnetic field conditions. Journal of Geophysical Research: Space Physics, 124 ( 4 ), 3100 – 3109. https://doi.org/10.1029/2018JA026266 | |
dc.identifier.citedreference | Xu, S., Mitchell, D., Liemohn, M., Fang, X., Ma, Y., Luhmann, J., et al. ( 2017 ). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 1831 – 1852. https://doi.org/10.1002/2016JA023467 | |
dc.identifier.citedreference | Xu, S., Mitchell, D. L., Weber, T., Brain, D. A., Luhmann, J. G., Dong, C., et al. ( 2020 ). Characterizing Mars’s magnetotail topology with respect to the upstream interplanetary magnetic fields. Journal of Geophysical Research: Space Physics, 125 ( 3 ), e2019JA027755. https://doi.org/10.1029/2019JA027755 | |
dc.identifier.citedreference | Zhang, C., Rong, Z., Klinger, L., Nilsson, H., Shi, Z., He, F., et al. ( 2022 ). Three-dimensional configuration of induced magnetic fields around Mars. Journal of Geophysical Research: Planets, 127 ( 8 ), e2022JE007334. https://doi.org/10.1029/2022JE007334 | |
dc.identifier.citedreference | Zhang, C., Rong, Z., Nilsson, H., Klinger, L., Xu, S., Futaana, Y., et al. ( 2021 ). MAVEN observations of periodic low-altitude plasma clouds at Mars. The Astrophysical Journal Letters, 922 ( 2 ), L33. https://doi.org/10.3847/2041-8213/ac3a7d | |
dc.identifier.citedreference | Zuber, M. T., Smith, D. E., Solomon, S. C., Muhleman, D. O., Head, J. W., Garvin, J. B., et al. ( 1992 ). The Mars Observer laser altimeter investigation. Journal of Geophysical Research, 97 ( E5 ), 7781 – 7797. https://doi.org/10.1029/92JE00341 | |
dc.identifier.citedreference | Abrahams, E. S., Bloom, J. S., Szkody, P., Rix, H.-W., & Mowlavi, N. ( 2022 ). Informing the cataclysmic variable sequence from Gaia data: The orbital-period-color-absolute-magnitude relationship. The Astrophysical Journal, 938 ( 1 ), 46. https://doi.org/10.3847/1538-4357/ac87ab | |
dc.identifier.citedreference | Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., et al. ( 1999 ). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284 ( 5415 ), 790 – 793. https://doi.org/10.1126/science.284.5415.790 | |
dc.identifier.citedreference | Azari, A., Biersteker, J. B., Dewey, R. M., Doran, G., Forsberg, E. J., Harris, C. D. K., et al. ( 2021 ). Integrating machine learning for planetary science: Perspectives for the next decade. Bulletin of the AAS, 53 ( 4 ). https://doi.org/10.3847/25c2cfeb.aa328727 | |
dc.identifier.citedreference | Bayes, T., & Price, R. ( 1763 ). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. (Vol. 53, pp. 370 – 418 ). Philosophical Transactions of the Royal Society of London. https://doi.org/10.1098/rstl.1763.0053 | |
dc.identifier.citedreference | Brain, D. A. ( 2006 ). Mars Global Surveyor measurements of the Martian solar wind interaction. Space Science Reviews, 126 ( 1–4 ), 77 – 112. https://doi.org/10.1007/s11214-006-9122-x | |
dc.identifier.citedreference | Brain, D. A., Mitchell, D. L., & Halekas, J. S. ( 2006 ). The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus, 182 ( 2 ), 464 – 473. https://doi.org/10.1016/j.icarus.2005.09.023 | |
dc.identifier.citedreference | Chai, L., Wan, W., Wei, Y., Zhang, T., Exner, W., Fraenz, M., et al. ( 2019 ). The induced global looping magnetic field on Mars. The Astrophysical Journal, 871 ( 2 ), L27. https://doi.org/10.3847/2041-8213/aaff6e | |
dc.identifier.citedreference | Cloutier, P. A., Law, C. C., Crider, D. H., Walker, P. W., Chen, Y., Acuña, M. H., et al. ( 1999 ). Venus-like interaction of the solar wind with Mars. Geophysical Research Letters, 26 ( 17 ), 2685 – 2688. https://doi.org/10.1029/1999GL900591 | |
dc.identifier.citedreference | Connerney, J. E. P., Acuña, M. H., Ness, N. F., Spohn, T., & Schubert, G. ( 2004 ). Mars crustal magnetism. Space Science Reviews, 111 ( 1/2 ), 1 – 32. https://doi.org/10.1023/B:SPAC.0000032719.40094.1d | |
dc.identifier.citedreference | Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., & Sheppard, D. ( 2015 ). The MAVEN magnetic field investigation. Space Science Reviews, 195 ( 12 ), 257 – 291. https://doi.org/10.1007/s11214-015-0169-4 | |
dc.identifier.citedreference | Cowley, S. ( 1981 ). Magnetospheric asymmetries associated with the y-component of the IMF. Planetary and Space Science, 29 ( 1 ), 79 – 96. https://doi.org/10.1016/0032-0633(81)90141-0 | |
dc.identifier.citedreference | Crider, D. H., Brain, D. A., Acuña, M. H., Vignes, D., Mazelle, C., & Bertucci, C. ( 2004 ). Mars Global Surveyor observations of solar wind magnetic field draping around Mars. Space Science Reviews, 111 ( 1/2 ), 203 – 221. https://doi.org/10.1023/B:SPAC.0000032714.66124.4e | |
dc.identifier.citedreference | DiBraccio, G. A., Luhmann, J. G., Curry, S. M., Espley, J. R., Xu, S., Mitchell, D. L., et al. ( 2018 ). The twisted configuration of the Martian magnetotail: MAVEN observations. Geophysical Research Letters, 45 ( 10 ), 4559 – 4568. https://doi.org/10.1029/2018GL077251 | |
dc.identifier.citedreference | DiBraccio, G. A., Romanelli, N., Bowers, C. F., Gruesbeck, J. R., Halekas, J. S., Ruhunusiri, S., et al. ( 2022 ). A statistical investigation of factors influencing the magnetotail twist at Mars. Geophysical Research Letters, 49 ( 12 ), e2022GL098007. https://doi.org/10.1029/2022GL098007 | |
dc.identifier.citedreference | Dong, Y., Fang, X., Brain, D. A., Hurley, D. M., Halekas, J. S., Espley, J. R., et al. ( 2019 ). Magnetic field in the Martian magnetosheath and the application as an IMF clock angle proxy. Journal of Geophysical Research: Space Physics, 124 ( 6 ), 4295 – 4313. https://doi.org/10.1029/2019JA026522 | |
dc.identifier.citedreference | Dubinin, E., Fraenz, M., Modolo, R., Pätzold, M., Tellmann, S., Vaisberg, O., et al. ( 2021 ). Induced magnetic fields and plasma motions in the inner part of the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 126 ( 12 ), e2021JA029542. https://doi.org/10.1029/2021JA029542 | |
dc.identifier.citedreference | Dubinin, E., Fraenz, M., Pätzold, M., Halekas, J. S., Mcfadden, J., Connerney, J. E. P., et al. ( 2018 ). Solar wind deflection by mass loading in the Martian magnetosheath based on MAVEN observations. Geophysical Research Letters, 45 ( 6 ), 2574 – 2579. https://doi.org/10.1002/2017GL076813 | |
dc.identifier.citedreference | Dubinin, E., Fraenz, M., Pätzold, M., Woch, J., McFadden, J., Fan, K., et al. ( 2020 ). Impact of Martian crustal magnetic field on the ion escape. Journal of Geophysical Research: Space Physics, 125 ( 10 ), e2020JA028010. https://doi.org/10.1029/2020JA028010 | |
dc.identifier.citedreference | Duvenaud, D. K. ( 2014 ). The kernel cookbook: Advice on covariance functions. Retrieved from https://www.cs.toronto.edu/∼duvenaud/cookbook/ | |
dc.identifier.citedreference | Fang, X., Ma, Y., Luhmann, J., Dong, Y., Brain, D., Hurley, D., et al. ( 2018 ). The morphology of the solar wind magnetic field draping on the dayside of Mars and its variability. Geophysical Research Letters, 45 ( 8 ), 3356 – 3365. https://doi.org/10.1002/2018GL077230 | |
dc.identifier.citedreference | Fang, X., Ma, Y., Masunaga, K., Dong, Y., Brain, D., Halekas, J., et al. ( 2017 ). The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. Journal of Geophysical Research: Space Physics, 122 ( 4 ), 4117 – 4137. https://doi.org/10.1002/2016JA023509 | |
dc.identifier.citedreference | Flynn, C. L., Vogt, M. F., Withers, P., Andersson, L., England, S., & Liu, G. ( 2017 ). MAVEN observations of the effects of crustal magnetic fields on electron density and temperature in the Martian dayside ionosphere. Geophysical Research Letters, 44 ( 21 ), 10812 – 10821. https://doi.org/10.1002/2017GL075367 | |
dc.identifier.citedreference | Fowler, C. M., Hanley, K. G., McFadden, J., Halekas, J., Schwartz, S. J., Mazelle, C., et al. ( 2022 ). A MAVEN case study of radial IMF at Mars: Impacts on the dayside ionosphere. Journal of Geophysical Research: Space Physics, 127 ( 12 ), e2022JA030726. https://doi.org/10.1029/2022JA030726 | |
dc.identifier.citedreference | Fränz, M., Winningham, J., Dubinin, E., Roussos, E., Woch, J., Barabash, S., et al. ( 2006 ). Plasma intrusion above Mars crustal fields—Mars express ASPERA-3 observations. Icarus, 182 ( 2 ), 406 – 412. https://doi.org/10.1016/j.icarus.2005.11.016 | |
dc.identifier.citedreference | Gao, J. W., Rong, Z. J., Klinger, L., Li, X. Z., Liu, D., & Wei, Y. ( 2021 ). A spherical harmonic Martian crustal magnetic field model combining data sets of MAVEN and MGS. Earth and Space Science, 8 ( 10 ). https://doi.org/10.1029/2021EA001860 | |
dc.identifier.citedreference | González, Á. ( 2010 ). Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices. Mathematical Geosciences, 42 ( 49 ), 49 – 64. https://doi.org/10.1007/s11004-009-9257-x | |
dc.identifier.citedreference | Görtler, J., Kehlbeck, R., & Deussen, O. ( 2019 ). A visual exploration of Gaussian processes. Distill, 4 ( 4 ). https://doi.org/10.23915/distill.00017 | |
dc.identifier.citedreference | Gruesbeck, J. R., Espley, J. R., Connerney, J. E. P., DiBraccio, G. A., Soobiah, Y. I., Brain, D., et al. ( 2018 ). The three-dimensional bow shock of Mars as observed by MAVEN. Journal of Geophysical Research: Space Physics, 123 ( 6 ), 4542 – 4555. https://doi.org/10.1029/2018JA025366 | |
dc.identifier.citedreference | Halekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., et al. ( 2017 ). Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results. Journal of Geophysical Research: Space Physics, 122 ( 1 ), 547 – 578. https://doi.org/10.1002/2016JA023167 | |
dc.identifier.citedreference | Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., et al. ( 2015 ). The Solar Wind Ion Analyzer for MAVEN. Space Science Reviews, 195 ( 1–4 ), 125 – 151. https://doi.org/10.1007/s11214-013-0029-z | |
dc.identifier.citedreference | Hanley, K. G., McFadden, J. P., Mitchell, D. L., Fowler, C. M., Stone, S. W., Yelle, R. V., et al. ( 2021 ). In situ measurements of thermal ion temperature in the Martian ionosphere. Journal of Geophysical Research: Space Physics, 126 ( 12 ), e2021JA029531. https://doi.org/10.1029/2021JA029531 | |
dc.identifier.citedreference | Holmberg, M. K. G., André, N., Garnier, P., Modolo, R., Andersson, L., Halekas, J., et al. ( 2019 ). MAVEN and MEX multi-instrument study of the dayside of the Martian induced magnetospheric structure revealed by pressure analyses. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 8564 – 8589. https://doi.org/10.1029/2019JA026954 | |
dc.identifier.citedreference | James, G., Witten, D., Hastie, T., & Tibshirani, R. ( 2013 ). An introduction to statistical learning: With applications in R. Springer. | |
dc.identifier.citedreference | Kruschke, J. K. ( 2015 ). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Elsevier. | |
dc.identifier.citedreference | Kumar, R., Carroll, C., Hartikainen, A., & Martin, O. ( 2019 ). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4 ( 33 ), 1143. https://doi.org/10.21105/joss.01143 | |
dc.identifier.citedreference | Langlais, B., Thébault, E., Houliez, A., Purucker, M. E., & Lillis, R. J. ( 2019 ). A new model of the crustal magnetic field of Mars using MGS and MAVEN. Journal of Geophysical Research: Planets, 124 ( 6 ), 1542 – 1569. https://doi.org/10.1029/2018JE005854 | |
dc.identifier.citedreference | Law, C. C., & Cloutier, P. A. ( 1995 ). Observations of magnetic structure at the dayside ionopause of Venus. Journal of Geophysical Research, 100 ( A12 ), 23973 – 23981. https://doi.org/10.1029/95JA02756 | |
dc.identifier.citedreference | Lee, C. O., Jakosky, B. M., Luhmann, J. G., Brain, D. A., Mays, M. L., Hassler, D. M., et al. ( 2018 ). Observations and impacts of the 10 September 2017 solar events at Mars: An overview and synthesis of the initial results. Geophysical Research Letters, 45 ( 17 ), 8871 – 8885. https://doi.org/10.1029/2018GL079162 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.