Show simple item record

Magnetic Field Draping in Induced Magnetospheres: Evidence From the MAVEN Mission to Mars

dc.contributor.authorAzari, A. R.
dc.contributor.authorAbrahams, E.
dc.contributor.authorSapienza, F.
dc.contributor.authorMitchell, D. L.
dc.contributor.authorBiersteker, J.
dc.contributor.authorXu, S.
dc.contributor.authorBowers, C.
dc.contributor.authorPérez, F.
dc.contributor.authorDiBraccio, G. A.
dc.contributor.authorDong, Y.
dc.contributor.authorCurry, S.
dc.date.accessioned2023-12-04T20:25:44Z
dc.date.available2024-12-04 15:25:32en
dc.date.available2023-12-04T20:25:44Z
dc.date.issued2023-11
dc.identifier.citationAzari, A. R.; Abrahams, E.; Sapienza, F.; Mitchell, D. L.; Biersteker, J.; Xu, S.; Bowers, C.; Pérez, F. ; DiBraccio, G. A.; Dong, Y.; Curry, S. (2023). "Magnetic Field Draping in Induced Magnetospheres: Evidence From the MAVEN Mission to Mars." Journal of Geophysical Research: Space Physics 128(11): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/191595
dc.description.abstractThe Mars Atmosphere and Volatile EvolutioN (MAVEN) mission has been orbiting Mars since 2014 and now has over 10,000 orbits which we use to characterize Mars’ dynamic space environment. Through global field line tracing with MAVEN magnetic field data we find an altitude dependent draping morphology that differs from expectations of induced magnetospheres in the vertical (Z^ $hat{Z}$ Mars Sun-state, MSO) direction. We quantify this difference from the classical picture of induced magnetospheres with a Bayesian multiple linear regression model to predict the draped field as a function of the upstream interplanetary magnetic field (IMF), remanent crustal fields, and a previously underestimated induced effect. From our model we conclude that unexpected twists in high altitude dayside draping (>800 km) are a result of the IMF component in the ±X^ $pm hat{X}$ MSO direction. We propose that this is a natural outcome of current theories of induced magnetospheres but has been underestimated due to approximations of the IMF as solely ±Y^ $pm hat{Y}$ directed. We additionally estimate that distortions in low altitude (<800 km) dayside draping along Z^ $hat{Z}$ are directly related to remanent crustal fields. We show dayside draping traces down tail and previously reported inner magnetotail twists are likely caused by the crustal field of Mars, while the outer tail morphology is governed by an induced response to the IMF direction. We conclude with an updated understanding of induced magnetospheres which details dayside draping for multiple directions of the incoming IMF and discuss the repercussions of this draping for magnetotail morphology.Plain Language SummaryMars presents a dynamic and complex obstacle to the solar wind, a supersonic flow of magnetized plasma from the Sun. This complexity is due to Mars’ ionized upper atmosphere, or ionosphere, and a patchwork of strong crustal magnetic fields that rotate with the planet. These factors perturb how the solar wind magnetic field drapes around Mars. The solar wind magnetic field is most often approximated as either eastward or westward directed as referenced by Mars’ longitude. For planets without internally generated magnetic fields like Venus it is expected that the solar wind magnetic field would drape symmetrically around the ionosphere. However, spacecraft measurements have revealed a more complicated draping pattern at Mars including northward and southward directed draping. We show that these alterations can be explained by combination of crustal magnetic fields at low altitudes and by a previously underestimated effect of induced magnetospheres at high altitudes. These dayside draping alterations propagate globally throughout the Mars system, potentially explaining previously observed alterations in expected magnetotail observations. We conclude with an updated guide for how solar wind magnetic field draping occurs around induced obstacles and suggest that this is a unifying phenomenon of planetary and solar wind interactions.Key PointsWe quantify Mars’ induced magnetic field response as compared to responses from the intrinsic crustal and direct solar wind magnetic fieldsWe expand induced magnetosphere theory after showing twisted dayside fields depend on an underestimated induced effect and crustal fieldsTwisted dayside draping is a precursor to, and aligns with, observations of the twisted magnetotail at Mars
dc.publisherWiley Periodicals, Inc.
dc.publisherPhilosophical Transactions of the Royal Society of London
dc.subject.otherGaussian process regression
dc.subject.otherinduced magnetospheres
dc.subject.otherhybrid magnetospheres
dc.subject.otherplanetary science
dc.subject.otherBayesian methods
dc.subject.otherdata visualization
dc.titleMagnetic Field Draping in Induced Magnetospheres: Evidence From the MAVEN Mission to Mars
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbsecondlevelSpace Sciences and Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191595/1/jgra58137.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191595/2/jgra58137_am.pdf
dc.identifier.doi10.1029/2023JA031546
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRamstad, R., Brain, D. A., Dong, Y., Espley, J., Halekas, J., & Jakosky, B. ( 2020 ). The global current systems of the Martian induced magnetosphere. Nature Astronomy, 4 ( 10 ), 979 – 985. https://doi.org/10.1038/s41550-020-1099-y
dc.identifier.citedreferenceLiemohn, M. W., Xu, S., Dong, C., Bougher, S. W., Johnson, B. C., Ilie, R., & De Zeeuw, D. L. ( 2017 ). Ionospheric control of the dawn-dusk asymmetry of the Mars magnetotail current sheet. Journal of Geophysical Research: Space Physics, 122 ( 6 ), 6397 – 6414. https://doi.org/10.1002/2016JA023707
dc.identifier.citedreferenceLuhmann, J. G. ( 1986 ). The solar wind interaction with Venus. Space Science Reviews, 44 ( 3–4 ), 241 – 306. https://doi.org/10.1007/BF00200818
dc.identifier.citedreferenceLuhmann, J. G. ( 1992 ). Comparative studies of the solar wind interaction with weakly magnetized planets. Advances in Space Research, 12 ( 12 ), 191 – 203. https://doi.org/10.1016/0273-1177(92)90331-Q
dc.identifier.citedreferenceLuhmann, J. G., & Brace, L. H. ( 1991 ). Near-Mars space. Reviews of Geophysics, 29 ( 2 ), 121 – 140. https://doi.org/10.1029/91RG00066
dc.identifier.citedreferenceLuhmann, J. G., & Cravens, T. E. ( 1991 ). Magnetic fields in the ionosphere of Venus. Space Science Reviews, 55 ( 2 ), 201 – 274. https://doi.org/10.1007/BF00177138
dc.identifier.citedreferenceLuhmann, J. G., & Russell, C. T. ( 1997 ). Venus: Magnetic field and magnetosphere. In Encyclopedia of planetary science (pp. 905 – 907 ). Springer. https://doi.org/10.1007/1-4020-4520-4_440
dc.identifier.citedreferenceMarquette, M. L., Lillis, R. J., Halekas, J. S., Luhmann, J. G., Gruesbeck, J. R., & Espley, J. R. ( 2018 ). Autocorrelation study of solar wind plasma and IMF properties as measured by the MAVEN spacecraft. Journal of Geophysical Research: Space Physics, 123 ( 4 ), 2493 – 2512. https://doi.org/10.1002/2018JA025209
dc.identifier.citedreferenceMcComas, D. J., Spence, H. E., Russell, C. T., & Saunders, M. A. ( 1986 ). The average magnetic field draping and consistent plasma properties of the Venus magnetotail. Journal of Geophysical Research, 91 ( A7 ), 7939 – 7953. https://doi.org/10.1029/JA091iA07p07939
dc.identifier.citedreferenceMichotte de Welle, B., Aunai, N., Nguyen, G., Lavraud, B., Génot, V., Jeandet, A., & Smets, R. ( 2022 ). Global three-dimensional draping of magnetic field lines in Earth’s magnetosheath from in-situ spacecraft measurements. Journal of Geophysical Research: Space Physics, 127 ( 12 ), e2022JA030996. https://doi.org/10.1029/2022JA030996
dc.identifier.citedreferenceNagy, A., Winterhalter, D., Sauer, K., Cravens, T., Brecht, S., Mazelle, C., et al. ( 2004 ). The plasma environment of Mars. Space Science Reviews, 111 ( 1/2 ), 33 – 114. https://doi.org/10.1023/B:SPAC.0000032718.47512.92
dc.identifier.citedreferenceNASA PDS. ( 2022 ). MAVEN MAG calibrated data bundle [Dataset]. NASA. https://doi.org/10.17189/1414178
dc.identifier.citedreferenceParker, E. N. ( 1958 ). Dynamics of the interplanetary gas and magnetic fields. The Astrophysical Journal, 128, 664. https://doi.org/10.1086/146579
dc.identifier.citedreferencePedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. ( 2011 ). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2825 – 2830.
dc.identifier.citedreferencePitkänen, T., Hamrin, M., Kullen, A., Maggiolo, R., Karlsson, T., Nilsson, H., & Norqvist, P. ( 2016 ). Response of magnetotail twisting to variations in IMF By: A THEMIS case study 1–2 January 2009. Geophysical Research Letters, 43 ( 15 ), 7822 – 7830. https://doi.org/10.1002/2016GL070068
dc.identifier.citedreferencePlotly Technologies Inc. ( 2015 ). Collaborative data science. Plotly Technologies Inc. Retrieved from https://plot.ly
dc.identifier.citedreferenceRasmussen, C. E., & Williams, C. K. I. ( 2006 ). Gaussian processes for machine learning. The MIT Press.
dc.identifier.citedreferenceRomanelli, N., Bertucci, C., Gómez, D., & Mazelle, C. ( 2015 ). Dependence of the location of the Martian magnetic lobes on the interplanetary magnetic field direction: Observations from mars global surveyor. Journal of Geophysical Research: Space Physics, 120 ( 9 ), 7737 – 7747. https://doi.org/10.1002/2015JA021359
dc.identifier.citedreferenceRomanelli, N., DiBraccio, G. A., Slavin, J., Bowers, C., & Weber, T. ( 2022 ). The search for magnetotail twisting at Mercury: Comparing MESSENGER observations with the terrestrial case. Geophysical Research Letters, 49 ( 24 ), e2022GL101643. https://doi.org/10.1029/2022GL101643
dc.identifier.citedreferenceRong, Z. J., Barabash, S., Futaana, Y., Stenberg, G., Zhang, T. L., Wan, W. X., et al. ( 2014 ). Morphology of magnetic field in near-Venus magnetotail: Venus express observations. Journal of Geophysical Research: Space Physics, 119 ( 11 ), 8838 – 8847. https://doi.org/10.1002/2014JA020461
dc.identifier.citedreferenceRong, Z. J., Stenberg, G., Wei, Y., Chai, L. H., Futaana, Y., Barabash, S., et al. ( 2016 ). Is the flow-aligned component of IMF really able to impact the magnetic field structure of Venusian magnetotail? Journal of Geophysical Research: Space Physics, 121 ( 11 ), 10978 – 10993. https://doi.org/10.1002/2016JA022413
dc.identifier.citedreferenceRuhunusiri, S., Halekas, J. S., Espley, J. R., Eparvier, F., Brain, D., Mazelle, C., et al. ( 2018 ). An artificial neural network for inferring solar wind proxies at Mars. Geophysical Research Letters, 45 ( 20 ), 10855 – 10865. https://doi.org/10.1029/2018GL079282
dc.identifier.citedreferenceSalvatier, J., Wiecki, T., & Fonnesbeck, C. ( 2016 ). Probabilistic programming in Python using PyMC3. PeerJ Computer Science, 2, e55. https://doi.org/10.7717/peerj-cs.55
dc.identifier.citedreferenceSaunders, M. A., & Russell, C. T. ( 1986 ). Average dimension and magnetic structure of the distant Venus magnetotail. Journal of Geophysical Research, 91 ( A5 ), 5589 – 5604. https://doi.org/10.1029/JA091iA05p05589
dc.identifier.citedreferenceSwinbank, R., & Purser, J. R. ( 2006 ). Fibonacci grids: A novel approach to global modelling. Quarterly Journal of the Royal Meteorological Society, 132 ( 619 ), 1769 – 1793. https://doi.org/10.1256/qj.05.227
dc.identifier.citedreferenceThrane, E., & Talbot, C. ( 2019 ). An introduction to Bayesian inference in gravitational-wave astronomy: Parameter estimation, model selection, and hierarchical models (Vol. 36 ). Publications of the Astronomical Society of Australia. https://doi.org/10.1017/pasa.2019.2. e010
dc.identifier.citedreferenceWeber, T., Brain, D., Xu, S., Mitchell, D., Espley, J., Mazelle, C., et al. ( 2021 ). Martian crustal field influence on O + and O 2 + escape as measured by MAVEN. Journal of Geophysical Research: Space Physics, 126 ( 8 ), e2021JA029234. https://doi.org/10.1029/2021JA029234
dc.identifier.citedreferenceWilkinson, D. J. ( 2007 ). Bayesian methods in bioinformatics and computational systems biology. Briefings in Bioinformatics, 8 ( 2 ), 109 – 116. https://doi.org/10.1093/bib/bbm007
dc.identifier.citedreferenceWithers, P. ( 2009 ). A review of observed variability in the dayside ionosphere of Mars. Advances in Space Research, 44 ( 3 ), 277 – 307. https://doi.org/10.1016/j.asr.2009.04.027
dc.identifier.citedreferenceWithers, P., Flynn, C. L., Vogt, M. F., Mayyasi, M., Mahaffy, P., Benna, M., et al. ( 2019 ). Mars’s dayside upper ionospheric composition is affected by magnetic field conditions. Journal of Geophysical Research: Space Physics, 124 ( 4 ), 3100 – 3109. https://doi.org/10.1029/2018JA026266
dc.identifier.citedreferenceXu, S., Mitchell, D., Liemohn, M., Fang, X., Ma, Y., Luhmann, J., et al. ( 2017 ). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. Journal of Geophysical Research: Space Physics, 122 ( 2 ), 1831 – 1852. https://doi.org/10.1002/2016JA023467
dc.identifier.citedreferenceXu, S., Mitchell, D. L., Weber, T., Brain, D. A., Luhmann, J. G., Dong, C., et al. ( 2020 ). Characterizing Mars’s magnetotail topology with respect to the upstream interplanetary magnetic fields. Journal of Geophysical Research: Space Physics, 125 ( 3 ), e2019JA027755. https://doi.org/10.1029/2019JA027755
dc.identifier.citedreferenceZhang, C., Rong, Z., Klinger, L., Nilsson, H., Shi, Z., He, F., et al. ( 2022 ). Three-dimensional configuration of induced magnetic fields around Mars. Journal of Geophysical Research: Planets, 127 ( 8 ), e2022JE007334. https://doi.org/10.1029/2022JE007334
dc.identifier.citedreferenceZhang, C., Rong, Z., Nilsson, H., Klinger, L., Xu, S., Futaana, Y., et al. ( 2021 ). MAVEN observations of periodic low-altitude plasma clouds at Mars. The Astrophysical Journal Letters, 922 ( 2 ), L33. https://doi.org/10.3847/2041-8213/ac3a7d
dc.identifier.citedreferenceZuber, M. T., Smith, D. E., Solomon, S. C., Muhleman, D. O., Head, J. W., Garvin, J. B., et al. ( 1992 ). The Mars Observer laser altimeter investigation. Journal of Geophysical Research, 97 ( E5 ), 7781 – 7797. https://doi.org/10.1029/92JE00341
dc.identifier.citedreferenceAbrahams, E. S., Bloom, J. S., Szkody, P., Rix, H.-W., & Mowlavi, N. ( 2022 ). Informing the cataclysmic variable sequence from Gaia data: The orbital-period-color-absolute-magnitude relationship. The Astrophysical Journal, 938 ( 1 ), 46. https://doi.org/10.3847/1538-4357/ac87ab
dc.identifier.citedreferenceAcuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., et al. ( 1999 ). Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science, 284 ( 5415 ), 790 – 793. https://doi.org/10.1126/science.284.5415.790
dc.identifier.citedreferenceAzari, A., Biersteker, J. B., Dewey, R. M., Doran, G., Forsberg, E. J., Harris, C. D. K., et al. ( 2021 ). Integrating machine learning for planetary science: Perspectives for the next decade. Bulletin of the AAS, 53 ( 4 ). https://doi.org/10.3847/25c2cfeb.aa328727
dc.identifier.citedreferenceBayes, T., & Price, R. ( 1763 ). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr. Bayes, F. R. S. communicated by Mr. Price, in a letter to John Canton, A. M. F. R. S. (Vol. 53, pp. 370 – 418 ). Philosophical Transactions of the Royal Society of London. https://doi.org/10.1098/rstl.1763.0053
dc.identifier.citedreferenceBrain, D. A. ( 2006 ). Mars Global Surveyor measurements of the Martian solar wind interaction. Space Science Reviews, 126 ( 1–4 ), 77 – 112. https://doi.org/10.1007/s11214-006-9122-x
dc.identifier.citedreferenceBrain, D. A., Mitchell, D. L., & Halekas, J. S. ( 2006 ). The magnetic field draping direction at Mars from April 1999 through August 2004. Icarus, 182 ( 2 ), 464 – 473. https://doi.org/10.1016/j.icarus.2005.09.023
dc.identifier.citedreferenceChai, L., Wan, W., Wei, Y., Zhang, T., Exner, W., Fraenz, M., et al. ( 2019 ). The induced global looping magnetic field on Mars. The Astrophysical Journal, 871 ( 2 ), L27. https://doi.org/10.3847/2041-8213/aaff6e
dc.identifier.citedreferenceCloutier, P. A., Law, C. C., Crider, D. H., Walker, P. W., Chen, Y., Acuña, M. H., et al. ( 1999 ). Venus-like interaction of the solar wind with Mars. Geophysical Research Letters, 26 ( 17 ), 2685 – 2688. https://doi.org/10.1029/1999GL900591
dc.identifier.citedreferenceConnerney, J. E. P., Acuña, M. H., Ness, N. F., Spohn, T., & Schubert, G. ( 2004 ). Mars crustal magnetism. Space Science Reviews, 111 ( 1/2 ), 1 – 32. https://doi.org/10.1023/B:SPAC.0000032719.40094.1d
dc.identifier.citedreferenceConnerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., & Sheppard, D. ( 2015 ). The MAVEN magnetic field investigation. Space Science Reviews, 195 ( 12 ), 257 – 291. https://doi.org/10.1007/s11214-015-0169-4
dc.identifier.citedreferenceCowley, S. ( 1981 ). Magnetospheric asymmetries associated with the y-component of the IMF. Planetary and Space Science, 29 ( 1 ), 79 – 96. https://doi.org/10.1016/0032-0633(81)90141-0
dc.identifier.citedreferenceCrider, D. H., Brain, D. A., Acuña, M. H., Vignes, D., Mazelle, C., & Bertucci, C. ( 2004 ). Mars Global Surveyor observations of solar wind magnetic field draping around Mars. Space Science Reviews, 111 ( 1/2 ), 203 – 221. https://doi.org/10.1023/B:SPAC.0000032714.66124.4e
dc.identifier.citedreferenceDiBraccio, G. A., Luhmann, J. G., Curry, S. M., Espley, J. R., Xu, S., Mitchell, D. L., et al. ( 2018 ). The twisted configuration of the Martian magnetotail: MAVEN observations. Geophysical Research Letters, 45 ( 10 ), 4559 – 4568. https://doi.org/10.1029/2018GL077251
dc.identifier.citedreferenceDiBraccio, G. A., Romanelli, N., Bowers, C. F., Gruesbeck, J. R., Halekas, J. S., Ruhunusiri, S., et al. ( 2022 ). A statistical investigation of factors influencing the magnetotail twist at Mars. Geophysical Research Letters, 49 ( 12 ), e2022GL098007. https://doi.org/10.1029/2022GL098007
dc.identifier.citedreferenceDong, Y., Fang, X., Brain, D. A., Hurley, D. M., Halekas, J. S., Espley, J. R., et al. ( 2019 ). Magnetic field in the Martian magnetosheath and the application as an IMF clock angle proxy. Journal of Geophysical Research: Space Physics, 124 ( 6 ), 4295 – 4313. https://doi.org/10.1029/2019JA026522
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Modolo, R., Pätzold, M., Tellmann, S., Vaisberg, O., et al. ( 2021 ). Induced magnetic fields and plasma motions in the inner part of the Martian magnetosphere. Journal of Geophysical Research: Space Physics, 126 ( 12 ), e2021JA029542. https://doi.org/10.1029/2021JA029542
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Pätzold, M., Halekas, J. S., Mcfadden, J., Connerney, J. E. P., et al. ( 2018 ). Solar wind deflection by mass loading in the Martian magnetosheath based on MAVEN observations. Geophysical Research Letters, 45 ( 6 ), 2574 – 2579. https://doi.org/10.1002/2017GL076813
dc.identifier.citedreferenceDubinin, E., Fraenz, M., Pätzold, M., Woch, J., McFadden, J., Fan, K., et al. ( 2020 ). Impact of Martian crustal magnetic field on the ion escape. Journal of Geophysical Research: Space Physics, 125 ( 10 ), e2020JA028010. https://doi.org/10.1029/2020JA028010
dc.identifier.citedreferenceDuvenaud, D. K. ( 2014 ). The kernel cookbook: Advice on covariance functions. Retrieved from https://www.cs.toronto.edu/∼duvenaud/cookbook/
dc.identifier.citedreferenceFang, X., Ma, Y., Luhmann, J., Dong, Y., Brain, D., Hurley, D., et al. ( 2018 ). The morphology of the solar wind magnetic field draping on the dayside of Mars and its variability. Geophysical Research Letters, 45 ( 8 ), 3356 – 3365. https://doi.org/10.1002/2018GL077230
dc.identifier.citedreferenceFang, X., Ma, Y., Masunaga, K., Dong, Y., Brain, D., Halekas, J., et al. ( 2017 ). The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. Journal of Geophysical Research: Space Physics, 122 ( 4 ), 4117 – 4137. https://doi.org/10.1002/2016JA023509
dc.identifier.citedreferenceFlynn, C. L., Vogt, M. F., Withers, P., Andersson, L., England, S., & Liu, G. ( 2017 ). MAVEN observations of the effects of crustal magnetic fields on electron density and temperature in the Martian dayside ionosphere. Geophysical Research Letters, 44 ( 21 ), 10812 – 10821. https://doi.org/10.1002/2017GL075367
dc.identifier.citedreferenceFowler, C. M., Hanley, K. G., McFadden, J., Halekas, J., Schwartz, S. J., Mazelle, C., et al. ( 2022 ). A MAVEN case study of radial IMF at Mars: Impacts on the dayside ionosphere. Journal of Geophysical Research: Space Physics, 127 ( 12 ), e2022JA030726. https://doi.org/10.1029/2022JA030726
dc.identifier.citedreferenceFränz, M., Winningham, J., Dubinin, E., Roussos, E., Woch, J., Barabash, S., et al. ( 2006 ). Plasma intrusion above Mars crustal fields—Mars express ASPERA-3 observations. Icarus, 182 ( 2 ), 406 – 412. https://doi.org/10.1016/j.icarus.2005.11.016
dc.identifier.citedreferenceGao, J. W., Rong, Z. J., Klinger, L., Li, X. Z., Liu, D., & Wei, Y. ( 2021 ). A spherical harmonic Martian crustal magnetic field model combining data sets of MAVEN and MGS. Earth and Space Science, 8 ( 10 ). https://doi.org/10.1029/2021EA001860
dc.identifier.citedreferenceGonzález, Á. ( 2010 ). Measurement of areas on a sphere using Fibonacci and latitude–longitude lattices. Mathematical Geosciences, 42 ( 49 ), 49 – 64. https://doi.org/10.1007/s11004-009-9257-x
dc.identifier.citedreferenceGörtler, J., Kehlbeck, R., & Deussen, O. ( 2019 ). A visual exploration of Gaussian processes. Distill, 4 ( 4 ). https://doi.org/10.23915/distill.00017
dc.identifier.citedreferenceGruesbeck, J. R., Espley, J. R., Connerney, J. E. P., DiBraccio, G. A., Soobiah, Y. I., Brain, D., et al. ( 2018 ). The three-dimensional bow shock of Mars as observed by MAVEN. Journal of Geophysical Research: Space Physics, 123 ( 6 ), 4542 – 4555. https://doi.org/10.1029/2018JA025366
dc.identifier.citedreferenceHalekas, J. S., Ruhunusiri, S., Harada, Y., Collinson, G., Mitchell, D. L., Mazelle, C., et al. ( 2017 ). Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results. Journal of Geophysical Research: Space Physics, 122 ( 1 ), 547 – 578. https://doi.org/10.1002/2016JA023167
dc.identifier.citedreferenceHalekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., et al. ( 2015 ). The Solar Wind Ion Analyzer for MAVEN. Space Science Reviews, 195 ( 1–4 ), 125 – 151. https://doi.org/10.1007/s11214-013-0029-z
dc.identifier.citedreferenceHanley, K. G., McFadden, J. P., Mitchell, D. L., Fowler, C. M., Stone, S. W., Yelle, R. V., et al. ( 2021 ). In situ measurements of thermal ion temperature in the Martian ionosphere. Journal of Geophysical Research: Space Physics, 126 ( 12 ), e2021JA029531. https://doi.org/10.1029/2021JA029531
dc.identifier.citedreferenceHolmberg, M. K. G., André, N., Garnier, P., Modolo, R., Andersson, L., Halekas, J., et al. ( 2019 ). MAVEN and MEX multi-instrument study of the dayside of the Martian induced magnetospheric structure revealed by pressure analyses. Journal of Geophysical Research: Space Physics, 124 ( 11 ), 8564 – 8589. https://doi.org/10.1029/2019JA026954
dc.identifier.citedreferenceJames, G., Witten, D., Hastie, T., & Tibshirani, R. ( 2013 ). An introduction to statistical learning: With applications in R. Springer.
dc.identifier.citedreferenceKruschke, J. K. ( 2015 ). Doing Bayesian data analysis: A tutorial with R, JAGS, and Stan. Elsevier.
dc.identifier.citedreferenceKumar, R., Carroll, C., Hartikainen, A., & Martin, O. ( 2019 ). ArviZ a unified library for exploratory analysis of Bayesian models in Python. Journal of Open Source Software, 4 ( 33 ), 1143. https://doi.org/10.21105/joss.01143
dc.identifier.citedreferenceLanglais, B., Thébault, E., Houliez, A., Purucker, M. E., & Lillis, R. J. ( 2019 ). A new model of the crustal magnetic field of Mars using MGS and MAVEN. Journal of Geophysical Research: Planets, 124 ( 6 ), 1542 – 1569. https://doi.org/10.1029/2018JE005854
dc.identifier.citedreferenceLaw, C. C., & Cloutier, P. A. ( 1995 ). Observations of magnetic structure at the dayside ionopause of Venus. Journal of Geophysical Research, 100 ( A12 ), 23973 – 23981. https://doi.org/10.1029/95JA02756
dc.identifier.citedreferenceLee, C. O., Jakosky, B. M., Luhmann, J. G., Brain, D. A., Mays, M. L., Hassler, D. M., et al. ( 2018 ). Observations and impacts of the 10 September 2017 solar events at Mars: An overview and synthesis of the initial results. Geophysical Research Letters, 45 ( 17 ), 8871 – 8885. https://doi.org/10.1029/2018GL079162
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.