Show simple item record

Subgroup analysis and adaptive experiments crave for debiasing

dc.contributor.authorWang, Jingshen
dc.contributor.authorHe, Xuming
dc.date.accessioned2023-12-04T20:25:55Z
dc.date.available2024-12-04 15:25:53en
dc.date.available2023-12-04T20:25:55Z
dc.date.issued2023-11
dc.identifier.citationWang, Jingshen; He, Xuming (2023). "Subgroup analysis and adaptive experiments crave for debiasing." Wiley Interdisciplinary Reviews: Computational Statistics 15(6): n/a-n/a.
dc.identifier.issn1939-5108
dc.identifier.issn1939-0068
dc.identifier.urihttps://hdl.handle.net/2027.42/191597
dc.description.abstractResults obtained from reliably designed randomized experiments are often considered to be evidence of the highest grade for assessing the effectiveness of biomedical or behavioral interventions. Nevertheless, even with randomized experiments, statistical bias can arise in post hoc analysis of the data or through adaptive data collection. In this article, we discuss the need for and review some of the recent developments in statistical methodologies to address the issue of potential bias in adaptive experiments and in subgroup analysis. For adaptive experiments, we focus on adaptive treatment assignments. For subgroup analysis, we focus on post hoc subgroup selection and review several frequentist approaches for debiased inference on the best-selected subgroup effects.This article is categorized under:Applications of Computational Statistics > Clinical TrialsIn this review, we review three randomized experimental design strategies, including completely randomized experiments, covariate adaptive experiments, and response adaptive experiments. Furthermore, we categorize the subgroup analysis literature into three types: exploratory, debiased, and confirmatory subgroup analysis. The later part of this review focuses on discussing the methodologies used for conducting debiased subgroup analysis.
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherclinical trial
dc.subject.otherresampling
dc.subject.otherselection bias
dc.subject.othersequential experiment
dc.subject.otherstatistical inference
dc.subject.otherbootstrap
dc.subject.otheradaptive design
dc.titleSubgroup analysis and adaptive experiments crave for debiasing
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191597/1/wics1614.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191597/2/wics1614_am.pdf
dc.identifier.doi10.1002/wics.1614
dc.identifier.sourceWiley Interdisciplinary Reviews: Computational Statistics
dc.identifier.citedreferenceStallard, N. ( 2022 ). Adaptive enrichment designs with a continuous biomarker. Biometrics, 79, 9 – 19. https://doi.org/10.1111/biom.13644
dc.identifier.citedreferenceSutton, R. S., & Barto, A. G. ( 2018 ). Reinforcement learning: An introduction. MIT Press.
dc.identifier.citedreferenceSverdlov, O., Rosenberger, W. F., & Ryeznik, Y. ( 2013 ). Utility of covariate-adjusted response-adaptive randomization in survival trials. Statistics in Biopharmaceutical Research, 5 ( 1 ), 38 – 53.
dc.identifier.citedreferenceTaves, D. R. ( 1974 ). Minimization: A new method of assigning patients to treatment and control groups. Clinical Pharmacology & Therapeutics, 15 ( 5 ), 443 – 453.
dc.identifier.citedreferenceTaylor, J., & Tibshirani, R. J. ( 2015 ). Statistical learning and selective inference. Proceedings of the National Academy of Sciences, 112 ( 25 ), 7629 – 7634.
dc.identifier.citedreferenceThall, P. F., & Wathen, J. K. ( 2007 ). Practical Bayesian adaptive randomisation in clinical trials. European Journal of Cancer, 43 ( 5 ), 859 – 866.
dc.identifier.citedreferenceThall, P., Fox, P., & Wathen, J. ( 2015 ). Statistical controversies in clinical research: Scientific and ethical problems with adaptive randomization in comparative clinical trials. Annals of Oncology, 26 ( 8 ), 1621 – 1628.
dc.identifier.citedreferenceTian, L., Alizadeh, A. A., Gentles, A. J., & Tibshirani, R. ( 2014 ). A simple method for estimating interactions between a treatment and a large number of covariates. Journal of the American Statistical Association, 109 ( 508 ), 1517 – 1532.
dc.identifier.citedreferenceTibshirani, R. ( 1996 ). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58 ( 1 ), 267 – 288.
dc.identifier.citedreferenceVillar, S. S., & Rosenberger, W. F. ( 2018 ). Covariate-adjusted response-adaptive randomization for multi-arm clinical trials using a modified forward looking Gittins index rule. Biometrics, 74 ( 1 ), 49 – 57.
dc.identifier.citedreferenceWager, S., & Athey, S. ( 2018 ). Estimation and inference of heterogeneous treatment effects using random forests. Journal of the American Statistical Association, 113 ( 523 ), 1228 – 1242.
dc.identifier.citedreferenceWang, B., Susukida, R., Mojtabai, R., Amin-Esmaeili, M., & Rosenblum, M. ( 2021 ). Model-robust inference for clinical trials that improve precision by stratified randomization and covariate adjustment. Journal of the American Statistical Association, 1 – 12. https://doi.org/10.1080/01621459.2021.1981338
dc.identifier.citedreferenceWathen, J. K., & Thall, P. F. ( 2017 ). A simulation study of outcome adaptive randomization in multi-arm clinical trials. Clinical Trials, 14 ( 5 ), 432 – 440.
dc.identifier.citedreferenceWei, W., van der Laan, M., Zheng, Z., Wu, C., & Wang, J. ( 2022 ). Efficient targeted learning of heterogeneous treatment effects for multiple subgroups in observational studies. Bometrics, https://doi.org/10.1111/biom.13800
dc.identifier.citedreferenceWei, W., Zhou, Y., Zheng, Z., & Wang, J. ( 2022 ). Inference on the best policies with many covariates. arXiv preprint arXiv:2206.11868.
dc.identifier.citedreferenceWei, Y., Liu, L., Xiaogang, S., Zhao, L., & Jiang, H. ( 2020 ). Precision medicine: Subgroup identification in longitudinal trajectories. Statistical Methods in Medical Research, 29 ( 9 ), 2603 – 2616.
dc.identifier.citedreferenceWoody, S. A. Bayesian approaches for inference after selection and model fitting. [PhD thesis].
dc.identifier.citedreferenceWoody, S., Padilla, O. H. M., & Scott, J. G. ( 2022 ). Optimal post-selection inference for sparse signals: A nonparametric empirical Bayes approach. Biometrika, 109 ( 1 ), 1 – 16.
dc.identifier.citedreferenceXu, M., Qin, T., & Liu, T.-Y. ( 2013 ). Estimation bias in multi-armed bandit algorithms for search advertising. Advances in Neural Information Processing Systems, 2400 – 2408.
dc.identifier.citedreferenceYe, T., Shao, J., Yi, Y., & Zhao, Q. ( 2022 ). Toward better practice of covariate adjustment in analyzing randomized clinical trials. Journal of the American Statistical Association, 1 – 13. https://doi.org/10.1080/01621459.2022.2049278
dc.identifier.citedreferenceZeldow, B., Vincent Lo Re, I. I. I., & Roy, J. ( 2019 ). A semiparametric modeling approach using bayesian additive regression trees with an application to evaluate heterogeneous treatment effects. The Annals of Applied Statistics, 13 ( 3 ), 1989.
dc.identifier.citedreferenceZhang, L.-X., Feifang, H., Cheung, S. H., & Chan, W. S. ( 2007 ). Asymptotic properties of covariate-adjusted response-adaptive designs. The Annals of Statistics, 35 ( 3 ), 1166 – 1182.
dc.identifier.citedreferenceZhong, Y., Kennedy, E. H., Bodnar, L. M., & Naimi, A. I. ( 2021 ). AIPW: An R package for augmented inverse probability–weighted estimation of average causal effects. American Journal of Epidemiology, 190 ( 12 ), 2690 – 2699.
dc.identifier.citedreferenceZhou, Q., Ernst, P. A., Morgan, K. L., Rubin, D. B., & Zhang, A. ( 2018 ). Sequential rerandomization. Biometrika, 105 ( 3 ), 745 – 752. https://doi.org/10.1093/biomet/asy031
dc.identifier.citedreferenceAgarwal, A., Jiang, N., Kakade, S. M., & Sun, W. ( 2022 ). Reinforcement learning: Theory and algorithms. Preprint, pages 1–193.
dc.identifier.citedreferenceAlemayehu, D., Chen, Y., & Markatou, M. ( 2018 ). A comparative study of subgroup identification methods for differential treatment effect: Performance metrics and recommendations. Statistical Methods in Medical Research, 27 ( 12 ), 3658 – 3678.
dc.identifier.citedreferenceAndrews, I., Bowen, D., Kitagawa, T., & McCloskey, A. ( 2022 ). Inference for losers. AEA Papers and Proceedings, 112, 635 – 642.
dc.identifier.citedreferenceAndrews, I., Kitagawa, T., & McCloskey, A. ( 2019 ). Inference on winners. Technical report, National Bureau of Economic Research.
dc.identifier.citedreferenceAthey, S., Bickel, P. J., Chen, A., Imbens, G., & Pollmann, M. ( 2021 ). Semiparametric estimation of treatment effects in randomized experiments. Technical report, National Bureau of Economic Research.
dc.identifier.citedreferenceAthey, S., & Imbens, G. ( 2016 ). Recursive partitioning for heterogeneous causal effects. Proceedings of the National Academy of Sciences, 113 ( 27 ), 7353 – 7360.
dc.identifier.citedreferenceAtkinson, A. C. ( 1982 ). Optimum biased coin designs for sequential clinical trials with prognostic factors. Biometrika, 69 ( 1 ), 61 – 67.
dc.identifier.citedreferenceAzevedo, E. M., Deng, A., Montiel Olea, J.’e. L., Rao, J., & Weyl, E. G. ( 2020 ). A/B testing with fat tails. Journal of Political Economy, 128 ( 12 ), 4614–000.
dc.identifier.citedreferenceBach, P., Chernozhukov, V., Kurz, M. S., & Spindler, M. ( 2021 ). Doubleml–an objectoriented implementation of double machine learning in r. arXiv preprint arXiv:2103.09603.
dc.identifier.citedreferenceBerry, D. A. ( 2012 ). Adaptive clinical trials in oncology. Nature Reviews Clinical Oncology, 9 ( 4 ), 199 – 207.
dc.identifier.citedreferenceBibaut, A., Dimakopoulou, M., Kallus, N., Chambaz, A., & van der Laan, M. ( 2021 ). Post-contextual-bandit inference. Advances in Neural Information Processing Systems, 34, 28548 – 28559.
dc.identifier.citedreferenceBowden, J., & Trippa, L. ( 2017 ). Unbiased estimation for response adaptive clinical trials. Statistical Methods in Medical Research, 26 ( 5 ), 2376 – 2388.
dc.identifier.citedreferenceBrankovic, M., Kardys, I., Steyerberg, E. W., Lemeshow, S., Markovic, M., Rizopoulos, D., & Boersma, E. ( 2019 ). Understanding of interaction (subgroup) analysis in clinical trials. European Journal of Clinical Investigation, 49 ( 8 ), e13145.
dc.identifier.citedreferenceBucher, C. G. ( 1988 ). Adaptive sampling—An iterative fast Monte Carlo procedure. Structural Safety, 5 ( 2 ), 119 – 126.
dc.identifier.citedreferenceBugni, F. A., Canay, I. A., & Shaikh, A. M. ( 2018 ). Inference under covariate-adaptive randomization. Journal of the American Statistical Association, 113 ( 524 ), 1784 – 1796.
dc.identifier.citedreferenceChernozhukov, V., Chetverikov, D., & Kato, K. ( 2019 ). Inference on causal and structural parameters using many moment inequalities. The Review of Economic Studies, 86 ( 5 ), 1867 – 1900.
dc.identifier.citedreferenceChernozhukov, V., Lee, S., & Rosen, A. M. ( 2013 ). Intersection bounds: Estimation and inference. Econometrica, 81 ( 2 ), 667 – 737.
dc.identifier.citedreferenceClaggett, B., Xie, M., & Tian, L. ( 2014 ). Meta-analysis with fixed, unknown, study-specific parameters. Journal of the American Statistical Association, 109 ( 508 ), 1660 – 1671.
dc.identifier.citedreferenceCook, D., Brown, D., Alexander, R., March, R., Morgan, P., Satterthwaite, G., & Pangalos, M. N. ( 2014 ). Lessons learned from the fate of AstraZeneca’s drug pipeline: A five dimensional framework. Nature Reviews Drug Discovery, 13 ( 6 ), 419 – 431.
dc.identifier.citedreferenceD’Amour, A., Ding, P., Feller, A., Lei, L., & Sekhon, J. ( 2021 ). Overlap in observational studies with high-dimensional covariates. Journal of Econometrics, 221 ( 2 ), 644 – 654.
dc.identifier.citedreferenceDezeure, R., Bühlmann, P., & Zhang, C.-H. ( 2017 ). High-dimensional simultaneous inference with the bootstrap. Test, 26 ( 4 ), 685 – 719.
dc.identifier.citedreferenceDmitrienko, A., & D’Agostino, R., Sr. ( 2013 ). Traditional multiplicity adjustment methods in clinical trials. Statistics in Medicine, 32 ( 29 ), 5172 – 5218.
dc.identifier.citedreferenceEfron, B. ( 1971 ). Forcing a sequential experiment to be balanced. Biometrika, 58 ( 3 ), 403 – 417.
dc.identifier.citedreferenceEfron, B. ( 2011 ). Tweedie’s formula and selection bias. Journal of the American Statistical Association, 106 ( 496 ), 1602 – 1614.
dc.identifier.citedreferenceEtor’e, P., & Jourdain, B. ( 2010 ). Adaptive optimal allocation in stratified sampling methods. Methodology and Computing in Applied Probability, 12 ( 3 ), 335 – 360.
dc.identifier.citedreferenceFirpo, S. ( 2007 ). Efficient semiparametric estimation of quantile treatment effects. Econometrica, 75 ( 1 ), 259 – 276.
dc.identifier.citedreferenceFoster, J. C., Taylor, J. M. G., & Ruberg, S. J. ( 2011 ). Subgroup identification from randomized clinical trial data. Statistics in Medicine, 30 ( 24 ), 2867 – 2880.
dc.identifier.citedreferenceGiessing, A., & Wang, J. ( 2021 ). Inference on heterogeneous quantile treatment effects via rank-score balancing. arXiv preprint arXiv:2102.01753.
dc.identifier.citedreferenceGötte, H., Donica, M., & Mordenti, G. ( 2015 ). Improving probabilities of correct interim decision in population enrichment designs. Journal of Biopharmaceutical Statistics, 25 ( 5 ), 1020 – 1038.
dc.identifier.citedreferenceGuo, X., & He, X. ( 2021 ). Inference on selected subgroups in clinical trials. Journal of the American Statistical Association, 116 ( 535 ), 1498 – 1506.
dc.identifier.citedreferenceGuo, X., Wei, W., Liu, M., Cai, T., Wu, C., & Wang, J. ( 2022 ). Assessing heterogeneous risk of type ii diabetes associated with statin usage: Evidence from electronic health record data. arXiv preprint arXiv:2205.06960.
dc.identifier.citedreferenceHadad, V., Hirshberg, D. A., Zhan, R., Wager, S., & Athey, S. ( 2021 ). Confidence intervals for policy evaluation in adaptive experiments. Proceedings of the National Academy of Sciences, 118 ( 15 ), e2014602118.
dc.identifier.citedreferenceHahn, J., Hirano, K., & Karlan, D. ( 2011 ). Adaptive experimental design using the propensity score. Journal of Business & Economic Statistics, 29 ( 1 ), 96 – 108.
dc.identifier.citedreferenceHahn, P. R., Murray, J. S., & Carvalho, C. M. ( 2020 ). Bayesian regression tree models for causal inference: Regularization, confounding, and heterogeneous effects. Bayesian Analysis, 15 ( 3 ), 965 – 1056.
dc.identifier.citedreferenceHall, P., & Miller, H. ( 2010 ). Bootstrap confidence intervals and hypothesis tests for extrema of parameters. Biometrika, 97 ( 4 ), 881 – 892.
dc.identifier.citedreferenceHasselt, H. ( 2010 ). Double q-learning. Advances in Neural Information Processing Systems, 2613–2621.
dc.identifier.citedreferenceHill, J. L. ( 2011 ). Bayesian nonparametric modeling for causal inference. Journal of Computational and Graphical Statistics, 20 ( 1 ), 217 – 240.
dc.identifier.citedreferenceHu, F., & Rosenberger, W. F. ( 2006 ). The theory of response-adaptive randomization in clinical trials (Vol. 525 ). John Wiley & Sons.
dc.identifier.citedreferenceHu, J., Zhu, H., & Hu, F. ( 2015 ). A unified family of covariate-adjusted response-adaptive designs based on efficiency and ethics. Journal of the American Statistical Association, 110 ( 509 ), 357 – 367.
dc.identifier.citedreferenceImai, K., & Ratkovic, M. ( 2013 ). Estimating treatment effect heterogeneity in randomized program evaluation. The Annals of Applied Statistics, 7 ( 1 ), 443 – 470.
dc.identifier.citedreferenceKapelner, A., & Krieger, A. ( 2014 ). Matching on-the-fly: Sequential allocation with higher power and efficiency. Biometrics, 70 ( 2 ), 378 – 388.
dc.identifier.citedreferenceKasy, M., & Sautmann, A. ( 2021 ). Adaptive treatment assignment in experiments for policy choice. Econometrica, 89 ( 1 ), 113 – 132.
dc.identifier.citedreferenceKubota, K., Ichinose, Y., Scagliotti, G., Spigel, D., Kim, J. H., Shinkai, T., Takeda, K., Kim, S.-W., Hsia, T.-C., & Li, R. K. ( 2014 ). Phase III study (MONET1) of motesanib plus carboplatin/paclitaxel in patients with advanced nonsquamous nonsmall-cell lung cancer (NSCLC): Asian subgroup analysis. Annals of Oncology, 25 ( 2 ), 529 – 536.
dc.identifier.citedreferenceKünzel, S. R., Sekhon, J. S., Bickel, P. J., & Yu, B. ( 2019 ). Meta-learners for estimating heterogeneous treatment effects using machine learning. Proceedings of the National Academy of Sciences, 116 ( 10 ), 4156 – 4165.
dc.identifier.citedreferenceLai, T. L., Lavori, P. W., & Tsang, K. W. ( 2019 ). Adaptive enrichment designs for confirmatory trials. Statistics in Medicine, 38 ( 4 ), 613 – 624.
dc.identifier.citedreferenceLee, J. D., Sun, D. L., Sun, Y., & Taylor, J. E. ( 2016 ). Exact post-selection inference, with application to the lasso. The Annals of Statistics, 44 ( 3 ), 907 – 927.
dc.identifier.citedreferenceLee, M. R., & Shen, M. ( 2018 ). Winner’s curse: Bias estimation for total effects of features in online controlled experiments. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 491–499.
dc.identifier.citedreferenceLi, X., & Ding, P. ( 2020 ). Rerandomization and regression adjustment. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82 ( 1 ), 241 – 268.
dc.identifier.citedreferenceLin, W. ( 2013 ). Agnostic notes on regression adjustments to experimental data: Reexamining freedman’s critique. The Annals of Applied Statistics, 7 ( 1 ), 295 – 318.
dc.identifier.citedreferenceLiu, Y., Ma, X., Zhang, D., Geng, L., Wang, X., Zheng, W., & Chen, M.-H. ( 2019 ). Look before you leap: Systematic evaluation of tree-based statistical methods in subgroup identification. Journal of Biopharmaceutical Statistics, 29 ( 6 ), 1082 – 1102.
dc.identifier.citedreferenceLoh, W.-Y., Cao, L., & Zhou, P. ( 2019 ). Subgroup identification for precision medicine: A comparative review of 13 methods. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9 ( 5 ), e1326.
dc.identifier.citedreferenceLu, X., Van Roy, B., Dwaracherla, V., Ibrahimi, M., Osband, I., & Wen, Z. ( 2021 ). Reinforcement learning, bit by bit. arXiv preprint arXiv:2103.04047.
dc.identifier.citedreferenceMa, S., & Huang, J. ( 2017 ). A concave pairwise fusion approach to subgroup analysis. Journal of the American Statistical Association, 112 ( 517 ), 410 – 423.
dc.identifier.citedreferenceMa, W., Feifang, H., & Zhang, L. ( 2015 ). Testing hypotheses of covariate-adaptive randomized clinical trials. Journal of the American Statistical Association, 110 ( 510 ), 669 – 680.
dc.identifier.citedreferenceMa, W., Qin, Y., Li, Y., & Feifang, H. ( 2020 ). Statistical inference for covariate-adaptive randomization procedures. Journal of the American Statistical Association, 115 ( 531 ), 1488 – 1497.
dc.identifier.citedreferenceMa, X., & Wang, J. ( 2020 ). Robust inference using inverse probability weighting. Journal of the American Statistical Association, 115 ( 532 ), 1851 – 1860.
dc.identifier.citedreferenceNie, X., Tian, X., Taylor, J., & Zou, J. ( 2018 ). Why adaptively collected data have negative bias and how to correct for it. In International conference on artificial intelligence and statistics, PMLR, pp. 1261–1269.
dc.identifier.citedreferenceNikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., & Courville, A. ( 2022 ). The primacy bias in deep reinforcement learning. In International conference on machine learning, PMLR, pp. 16828–16847.
dc.identifier.citedreferencePeeters, M., Oliner, K. S., Price, T. J., Cervantes, A., Sobrero, A. F., Ducreux, M., Hotko, Y., André, T., Chan, E., Lordick, F., Punt, C. J. A., Strickland, A. H., Wilson, G., Ciuleanu, T. E., Roman, L., van Cutsem, E., He, P., Yu, H., Koukakis, R., … Patterson, S. D. ( 2015 ). Analysis of KRAS/NRAS mutations in a phase III study of panitumumab with FOLFIRI compared with FOLFIRI alone as second-line treatment for metastatic colorectal cancer panitumumab plus FOLFIRI and RAS mutations in colorectal cancer. Clinical Cancer Research, 21 ( 24 ), 5469 – 5479.
dc.identifier.citedreferencePetticrew, M., Tugwell, P., Kristjansson, E., Oliver, S., Ueffing, E., & Welch, V. ( 2012 ). Damned if you do, damned if you don’t: Subgroup analysis and equity. Journal of Epidemiology and Community Health, 66 ( 1 ), 95 – 98.
dc.identifier.citedreferencePocock, S. J. ( 1979 ). Allocation of patients to treatment in clinical trials. Biometrics, 35, 183 – 197.
dc.identifier.citedreferencePocock, S. J., & Simon, R. ( 1975 ). Sequential treatment assignment with balancing for prognostic factors in the controlled clinical trial. Biometrics, 31, 103 – 115.
dc.identifier.citedreferenceQin, Y., Li, Y., Ma, W., & Hu, F. ( 2016 ). Pairwise sequential randomization and its properties. arXiv preprint arXiv:1611.02802.
dc.identifier.citedreferenceRobertson, D. S., Lee, K. M., Lopez-Kolkovska, B. C., & Villar, S. S. ( 2020 ). Responseadaptive randomization in clinical trials: From myths to practical considerations. arXiv Preprint arXiv:2005.00564.
dc.identifier.citedreferenceRosenbaum, P. R., & Rubin, D. B. ( 1983 ). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41 – 55.
dc.identifier.citedreferenceRosenberger, W. F., & Lachin, J. M. ( 2015 ). Randomization in clinical trials: Theory and practice. John Wiley & Sons.
dc.identifier.citedreferenceRosenberger, W. F., & Sverdlov, O. ( 2008 ). Handling covariates in the design of clinical trials. Statistical Science, 23 ( 3 ), 404 – 419.
dc.identifier.citedreferenceRusso, D. J., Van Roy, B., Kazerouni, A., Osband, I., & Wen, Z. ( 2018 ). A tutorial on Thompson sampling. Foundations and Trends in Machine Learning, 11 ( 1 ), 1 – 96.
dc.identifier.citedreferenceShao, J., Xinxin, Y., & Zhong, B. ( 2010 ). A theory for testing hypotheses under covariate-adaptive randomization. Biometrika, 97 ( 2 ), 347 – 360.
dc.identifier.citedreferenceShao, J., & Yu, X. ( 2013 ). Validity of tests under covariate-adaptive biased coin randomization and generalized linear models. Biometrics, 69 ( 4 ), 960 – 969.
dc.identifier.citedreferenceShen, J., & He, X. ( 2015 ). Inference for subgroup analysis with a structured logistic-normal mixture model. Journal of the American Statistical Association, 110 ( 509 ), 303 – 312.
dc.identifier.citedreferenceShin, J., Ramdas, A., & Rinaldo, A. ( 2019a ). On the bias, risk and consistency of sample means in multi-armed bandits. arXiv preprint arXiv:1902.00746.
dc.identifier.citedreferenceShin, J., Ramdas, A., & Rinaldo, A. ( 2019b ). Are sample means in multi-armed bandits positively or negatively biased? Advances in Neural Information Processing Systems, 32, 7102 – 7111.
dc.identifier.citedreferenceSimon, N., & Simon, R. ( 2013 ). Adaptive enrichment designs for clinical trials. Biostatistics, 14 ( 4 ), 613 – 625.
dc.identifier.citedreferenceSu, X., Tsai, C.-L., Wang, H., Nickerson, D. M., & Li, B. ( 2009 ). Subgroup analysis via recursive partitioning. Journal of Machine Learning Research, 10 ( Feb ), 141 – 158.
dc.identifier.citedreferenceSun, Y., He, X., & Jianhua, H. ( 2022 ). An omnibus test for detection of subgroup treatment effects via data partitioning. Annals of Applied Statistics, 16 ( 4 ), 2266 – 2278.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.