Dissecting Earth’s Magnetosphere: 3D Energy Transport in a Simulation of a Real Storm Event
dc.contributor.author | Brenner, A. | |
dc.contributor.author | Pulkkinen, T. I. | |
dc.contributor.author | Al Shidi, Q. | |
dc.contributor.author | Toth, G. | |
dc.date.accessioned | 2023-12-04T20:28:14Z | |
dc.date.available | 2024-12-04 15:28:09 | en |
dc.date.available | 2023-12-04T20:28:14Z | |
dc.date.issued | 2023-11 | |
dc.identifier.citation | Brenner, A.; Pulkkinen, T. I.; Al Shidi, Q.; Toth, G. (2023). "Dissecting Earth’s Magnetosphere: 3D Energy Transport in a Simulation of a Real Storm Event." Journal of Geophysical Research: Space Physics 128(11): n/a-n/a. | |
dc.identifier.issn | 2169-9380 | |
dc.identifier.issn | 2169-9402 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/191635 | |
dc.description.abstract | We present new analysis methods of 3D MHD output data from the Space Weather Modeling Framework during a simulated storm event. Earth’s magnetosphere is identified in the simulation domain and divided based on magnetic topology and the bounding magnetopause definition. Volume energy contents and surface energy fluxes are analyzed for each subregion to track the energy transport in the system as the driving solar wind conditions change. Two energy pathways are revealed, one external and one internal. The external pathway between the magnetosheath and magnetosphere has magnetic energy flux entering the lobes and escaping through the closed field region and is consistent with previous work and theory. The internal pathway, which has never been studied in this manner, reveals magnetically dominated energy recirculating between open and closed field lines. The energy enters the lobes across the dayside magnetospheric cusps and escapes the lobes through the nightside plasmasheet boundary layer. This internal circulation directly controls the energy content in the lobes and the partitioning of the total energy between lobes and closed field line regions. Qualitative analysis of four-field junction neighborhoods indicate the internal circulation pathway is controlled via the reconnection X-line(s), and by extension, the interplanetary magnetic field orientation. These results allow us to make clear and quantifiable arguments about the energy dynamics of Earth’s magnetosphere, and the role of the lobes as an expandable reservoir that cannot retain energy for long periods of time but can grow and shrink in energy content due to mismatch between incoming and outgoing energy flux.Plain Language SummaryResults of computer simulation of near Earth space is looked at in a new way to understand how energy moves around the global system. It is found that in addition to a pathway of energy from the outside into the system and back again there is an internal loop which recirculates energy. These new methods will greatly improve our understanding how the whole magnetosphere system evolves and will help address evolution of processes that have space weather impacts.Key PointsSimulation results are used to quantify the global energy dynamics of Earth’s magnetosphere in terms of energy pathwaysExternally during main phase most energy lost is from the closed region due to magnetopause erosion while most energy gained is through the lobe boundaryInternally, large amounts of energy is recirculated at the cusp from the closed to open field, then passed back to the closed region in the tail | |
dc.publisher | IUCSTP Secretariat, National Academy of Sciences | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | magnetopause | |
dc.subject.other | reconnection | |
dc.subject.other | magnetosphere | |
dc.subject.other | geospace | |
dc.subject.other | energy flux | |
dc.subject.other | Poynting flux | |
dc.title | Dissecting Earth’s Magnetosphere: 3D Energy Transport in a Simulation of a Real Storm Event | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Astronomy and Astrophysics | |
dc.subject.hlbsecondlevel | Space Sciences and Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191635/1/2023JA031899-sup-0001-Supporting_Information_SI-S01.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191635/2/jgra58141_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191635/3/jgra58141.pdf | |
dc.identifier.doi | 10.1029/2023JA031899 | |
dc.identifier.source | Journal of Geophysical Research: Space Physics | |
dc.identifier.citedreference | Russell, C. ( 1972 ). The configuration of the magnetosphere. In E. R. Dyer (Ed.), Critical problems in magnetospheric physics (pp. 1 – 16 ). IUCSTP Secretariat, National Academy of Sciences. | |
dc.identifier.citedreference | Freeman, J. W., Hills, H. K., Hill, T. W., Reiff, P. H., & Hardy, D. A. ( 1977 ). Heavy ion circulation in the Earth’s magnetosphere. Geophysical Research Letters, 4 ( 5 ), 195 – 197. https://doi.org/10.1029/gl004i005p00195 | |
dc.identifier.citedreference | Gjerloev, J. ( 2012 ). The SuperMAG data processing technique. Journal of Geophysical Research: Space Physics, 117 ( A9 ), A09213. https://doi.org/10.1029/2012ja017683 | |
dc.identifier.citedreference | Glocer, A., Knipp, D. J., Welling, D. T., Chappell, C. R., Toth, G., Fok, M.-C., et al. ( 2020 ). A case study on the origin of near-Earth plasma. Journal of Geophysical Research: Space Physics, 125 ( 11 ), e2020JA028205. https://doi.org/10.1029/2020ja028205 | |
dc.identifier.citedreference | Hoilijoki, S., Souza, V. M., Walsh, B., Janhunen, P., & Palmroth, M. ( 2014 ). Magnetopause reconnection and energy conversion as influenced by the dipole tilt and the IMF B x. Journal of Geophysical Research: Space Physics, 119 ( 6 ), 4484 – 4494. https://doi.org/10.1002/2013ja019693 | |
dc.identifier.citedreference | Imber, S. M., Milan, S., & Hubert, B. ( 2007 ). Observations of significant flux closure by dual lobe reconnection. Annales Geophysicae, 25 ( 7 ), 1617 – 1627. https://doi.org/10.5194/angeo-25-1617-2007 | |
dc.identifier.citedreference | Laitinen, T., Palmroth, M., Pulkkinen, T., Janhunen, P., & Koskinen, H. E. ( 2007 ). Continuous reconnection line and pressure-dependent energy conversion on the magnetopause in a global MHD model. Journal of Geophysical Research, 112 ( A11 ), A11201. https://doi.org/10.1029/2007ja012352 | |
dc.identifier.citedreference | Lavraud, B., Lavraud, B., Fedorov, A., Budnik, E., Budnik, E., Thomsen, M. F., et al. ( 2005 ). High-altitude cusp flow dependence on IMF orientation: A 3-year Cluster statistical study. Journal of Geophysical Research, 110 ( A2 ), A02209. https://doi.org/10.1029/2004ja010804 | |
dc.identifier.citedreference | Lockwood, M., Smith, M., & Smith, M. F. ( 1992 ). The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation. Journal of Geophysical Research, 97 ( A10 ), 14841 – 14847. https://doi.org/10.1029/92ja01261 | |
dc.identifier.citedreference | Lu, J., Zhang, H., Wang, M., Kabin, K., Zhou, Y., & Li, J. ( 2021 ). Energy transfer across the magnetopause under radial IMF conditions. The Astrophysical Journal, 920 ( 1 ), 52. https://doi.org/10.3847/1538-4357/ac15f4 | |
dc.identifier.citedreference | Mays, M. L., Horton, W., Spencer, E., & Kozyra, J. U. ( 2009 ). Real-time predictions of geomagnetic storms and substorms: Use of the solar wind magnetosphere-ionosphere system model. Space Weather, 7 ( 7 ), 07001. https://doi.org/10.1029/2008sw000459 | |
dc.identifier.citedreference | Milan, S., Milan, S. E., Carter, J. A., Carter, J. A., Bower, G., Imber, S. M., et al. ( 2020 ). Dual-lobe reconnection and horse-collar auroras. Journal of Geophysical Research, 125 ( 10 ), e2020JA028567. https://doi.org/10.1029/2020ja028567 | |
dc.identifier.citedreference | Mish, W. H., Green, J. L., Reph, M. G., & Peredo, M. ( 1995 ). ISTP science data systems and products. Space Science Reviews, 71 ( 1 ), 815 – 877. https://doi.org/10.1029/2020SW002551 | |
dc.identifier.citedreference | Mukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. ( 2020 ). Conductance model for extreme events impact of auroral conductance on space weather forecasts. Space Weather, 18 ( 11 ), e2020SW002551. https://doi.org/10.1002/essoar.10503207.1 | |
dc.identifier.citedreference | Newell, P. T., Sotirelis, T., Sotirelis, T., Liou, K., Meng, C.-I., Rich, F. J., & Rich, F. J. ( 2007 ). A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. Journal of Geophysical Research, 112 ( A1 ), A01206. https://doi.org/10.1029/2006ja012015 | |
dc.identifier.citedreference | Palmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T., et al. ( 2018 ). Vlasov methods in space physics and astrophysics. Living Reviews in Computational Astrophysics, 4 ( 1 ), 1. https://doi.org/10.1007/s41115-018-0003-2 | |
dc.identifier.citedreference | Palmroth, M., Pulkkinen, T., Janhunen, P., & Wu, C.-C. ( 2003 ). Stormtime energy transfer in global MHD simulation. Journal of Geophysical Research, 108 ( A1 ), 1048. https://doi.org/10.1029/2002JA009446 | |
dc.identifier.citedreference | Pitout, F., Pitout, F., Bogdanova, Y., & Bogdanova, Y. V. ( 2021 ). The polar cusp seen by Cluster. Journal of Geophysical Research, 126 ( 9 ), e2021JA029582. https://doi.org/10.1029/2021ja029582 | |
dc.identifier.citedreference | Pulkkinen, T. ( 2007 ). Space weather: Terrestrial perspective. Living Reviews in Solar Physics, 4 ( 1 ), 1. https://doi.org/10.12942/lrsp-2007-1 | |
dc.identifier.citedreference | Ridley, A. J., Gombosi, T. I., Sokolov, I. V., Toth, G., Knipp, D. J., & Welling, D. T. ( 2010 ). Numerical considerations in simulating the global magnetosphere. Annales Geophysicae, 28 ( 8 ), 1589 – 1614. https://doi.org/10.5194/angeo-28-1589-2010 | |
dc.identifier.citedreference | Shidi, Q. A. A., Pulkkinen, T., Toth, G., Brenner, A., Zou, S., & Gjerloev, J. ( 2022 ). A large simulation set of geomagnetic storms—Can simulations predict ground magnetometer station observations of magnetic field perturbations? Space Weather, 20 ( 11 ), e2022SW003049. https://doi.org/10.1029/2022sw003049 | |
dc.identifier.citedreference | Siscoe, G. L., & Huang, T. S. ( 1985 ). Polar cap inflation and deflation. Journal of Geophysical Research, 90 ( A1 ), 543 – 547. https://doi.org/10.1029/ja090ia01p00543 | |
dc.identifier.citedreference | Toth, G., van der Holst, B., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., De Zeeuw, D. L., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006 | |
dc.identifier.citedreference | Welling, D. T., & Liemohn, M. W. ( 2014 ). Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. Journal of Geophysical Research: Space Physics, 119 ( 4 ), 2691 – 2705. https://doi.org/10.1002/2013ja019374 | |
dc.identifier.citedreference | Xu, S., Liemohn, M. W., Dong, C., Mitchell, D. L., Bougher, S. W., & Ma, Y. ( 2016 ). Pressure and ion composition boundaries at Mars. Journal of Geophysical Research: Space Physics, 121 ( 7 ), 6417 – 6429. https://doi.org/10.1002/2016ja022644 | |
dc.identifier.citedreference | Zhang, H., Lu, J., & Wang, M. ( 2023 ). Energy transfer across magnetopause under dawn–dusk IMFs. Scientific Reports, 13 ( 1 ), 7409. https://doi.org/10.1038/s41598-023-34082-2 | |
dc.identifier.citedreference | Zhang, Y., Paxton, L. J., Schaefer, R. K., & Swartz, W. H. ( 2022 ). Thermospheric conditions associated with the loss of 40 Starlink satellites. Space Weather, 20 ( 10 ), e2022SW003168. https://doi.org/10.1029/2022sw003168 | |
dc.identifier.citedreference | Akasofu, S. ( 1981 ). Energy coupling between the solar wind and the magnetosphere. Space Science Reviews, 28 ( 2 ), 121 – 190. https://doi.org/10.1007/bf00218810 | |
dc.identifier.citedreference | Ala-Lahti, M., Pulkkinen, T. I., Pfau-Kempf, Y., Grandin, M., & Palmroth, M. ( 2022 ). Energy flux through the magnetopause during flux transfer events in hybrid-Vlasov 2D simulations. Geophysical Research Letters, 49 ( 19 ), e2022GL100079. https://doi.org/10.1029/2022GL100079 | |
dc.identifier.citedreference | Bagby-Wright, C.-A., Welling, D., Lopez, R., Katus, R., & Walsh, B. ( 2023 ). Recirculation of plasmasphere material during idealized magnetic storms. Frontiers in Physics, 11, 1146035. https://doi.org/10.3389/fphy.2023.1146035 | |
dc.identifier.citedreference | Brenner, A. ( 2023 ). Dissecting Earth’s magnetosphere: 3D energy transport in a simulation of a real storm event [Dataset]. Deep Blue Data. https://doi.org/10.7302/wveb-jk73 | |
dc.identifier.citedreference | Brenner, A., Pulkkinen, T. I., Al Shidi, Q., & Toth, G. ( 2021 ). Stormtime energetics: Energy transport across the magnetopause in a global MHD simulation. Frontiers in Astronomy and Space Sciences, 8, 756732. https://doi.org/10.3389/fspas.2021.756732 | |
dc.identifier.citedreference | Chen, Y., Toth, G., Cassak, P., Jia, X., Gombosi, T. I., Slavin, J. A., et al. ( 2017 ). Global three dimensional simulation of Earth’s dayside reconnection using a two way coupled magnetohydrodynamics with embedded particle in cell model initial results 3D MHD epic simulation of magnetosphere. Journal of Geophysical Research: Space Physics, 122 ( 10 ), 10318 – 10335. https://doi.org/10.1002/2017ja024186 | |
dc.identifier.citedreference | Dungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6 ( 2 ), 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47 | |
dc.identifier.citedreference | Escoubet, C., & Bosqued, J.-M. ( 1989 ). The influence of IMF- B z and/or AE on the polar cusp: An overview of observations from the AUREOL-3 satellite. Planetary and Space Science, 37 ( 5 ), 609 – 626. https://doi.org/10.1016/0032-0633(89)90100-1 | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.