Show simple item record

Dissecting Earth’s Magnetosphere: 3D Energy Transport in a Simulation of a Real Storm Event

dc.contributor.authorBrenner, A.
dc.contributor.authorPulkkinen, T. I.
dc.contributor.authorAl Shidi, Q.
dc.contributor.authorToth, G.
dc.date.accessioned2023-12-04T20:28:14Z
dc.date.available2024-12-04 15:28:09en
dc.date.available2023-12-04T20:28:14Z
dc.date.issued2023-11
dc.identifier.citationBrenner, A.; Pulkkinen, T. I.; Al Shidi, Q.; Toth, G. (2023). "Dissecting Earth’s Magnetosphere: 3D Energy Transport in a Simulation of a Real Storm Event." Journal of Geophysical Research: Space Physics 128(11): n/a-n/a.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/191635
dc.description.abstractWe present new analysis methods of 3D MHD output data from the Space Weather Modeling Framework during a simulated storm event. Earth’s magnetosphere is identified in the simulation domain and divided based on magnetic topology and the bounding magnetopause definition. Volume energy contents and surface energy fluxes are analyzed for each subregion to track the energy transport in the system as the driving solar wind conditions change. Two energy pathways are revealed, one external and one internal. The external pathway between the magnetosheath and magnetosphere has magnetic energy flux entering the lobes and escaping through the closed field region and is consistent with previous work and theory. The internal pathway, which has never been studied in this manner, reveals magnetically dominated energy recirculating between open and closed field lines. The energy enters the lobes across the dayside magnetospheric cusps and escapes the lobes through the nightside plasmasheet boundary layer. This internal circulation directly controls the energy content in the lobes and the partitioning of the total energy between lobes and closed field line regions. Qualitative analysis of four-field junction neighborhoods indicate the internal circulation pathway is controlled via the reconnection X-line(s), and by extension, the interplanetary magnetic field orientation. These results allow us to make clear and quantifiable arguments about the energy dynamics of Earth’s magnetosphere, and the role of the lobes as an expandable reservoir that cannot retain energy for long periods of time but can grow and shrink in energy content due to mismatch between incoming and outgoing energy flux.Plain Language SummaryResults of computer simulation of near Earth space is looked at in a new way to understand how energy moves around the global system. It is found that in addition to a pathway of energy from the outside into the system and back again there is an internal loop which recirculates energy. These new methods will greatly improve our understanding how the whole magnetosphere system evolves and will help address evolution of processes that have space weather impacts.Key PointsSimulation results are used to quantify the global energy dynamics of Earth’s magnetosphere in terms of energy pathwaysExternally during main phase most energy lost is from the closed region due to magnetopause erosion while most energy gained is through the lobe boundaryInternally, large amounts of energy is recirculated at the cusp from the closed to open field, then passed back to the closed region in the tail
dc.publisherIUCSTP Secretariat, National Academy of Sciences
dc.publisherWiley Periodicals, Inc.
dc.subject.othermagnetopause
dc.subject.otherreconnection
dc.subject.othermagnetosphere
dc.subject.othergeospace
dc.subject.otherenergy flux
dc.subject.otherPoynting flux
dc.titleDissecting Earth’s Magnetosphere: 3D Energy Transport in a Simulation of a Real Storm Event
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbsecondlevelSpace Sciences and Engineering
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191635/1/2023JA031899-sup-0001-Supporting_Information_SI-S01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191635/2/jgra58141_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191635/3/jgra58141.pdf
dc.identifier.doi10.1029/2023JA031899
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRussell, C. ( 1972 ). The configuration of the magnetosphere. In E. R. Dyer (Ed.), Critical problems in magnetospheric physics (pp. 1 – 16 ). IUCSTP Secretariat, National Academy of Sciences.
dc.identifier.citedreferenceFreeman, J. W., Hills, H. K., Hill, T. W., Reiff, P. H., & Hardy, D. A. ( 1977 ). Heavy ion circulation in the Earth’s magnetosphere. Geophysical Research Letters, 4 ( 5 ), 195 – 197. https://doi.org/10.1029/gl004i005p00195
dc.identifier.citedreferenceGjerloev, J. ( 2012 ). The SuperMAG data processing technique. Journal of Geophysical Research: Space Physics, 117 ( A9 ), A09213. https://doi.org/10.1029/2012ja017683
dc.identifier.citedreferenceGlocer, A., Knipp, D. J., Welling, D. T., Chappell, C. R., Toth, G., Fok, M.-C., et al. ( 2020 ). A case study on the origin of near-Earth plasma. Journal of Geophysical Research: Space Physics, 125 ( 11 ), e2020JA028205. https://doi.org/10.1029/2020ja028205
dc.identifier.citedreferenceHoilijoki, S., Souza, V. M., Walsh, B., Janhunen, P., & Palmroth, M. ( 2014 ). Magnetopause reconnection and energy conversion as influenced by the dipole tilt and the IMF B x. Journal of Geophysical Research: Space Physics, 119 ( 6 ), 4484 – 4494. https://doi.org/10.1002/2013ja019693
dc.identifier.citedreferenceImber, S. M., Milan, S., & Hubert, B. ( 2007 ). Observations of significant flux closure by dual lobe reconnection. Annales Geophysicae, 25 ( 7 ), 1617 – 1627. https://doi.org/10.5194/angeo-25-1617-2007
dc.identifier.citedreferenceLaitinen, T., Palmroth, M., Pulkkinen, T., Janhunen, P., & Koskinen, H. E. ( 2007 ). Continuous reconnection line and pressure-dependent energy conversion on the magnetopause in a global MHD model. Journal of Geophysical Research, 112 ( A11 ), A11201. https://doi.org/10.1029/2007ja012352
dc.identifier.citedreferenceLavraud, B., Lavraud, B., Fedorov, A., Budnik, E., Budnik, E., Thomsen, M. F., et al. ( 2005 ). High-altitude cusp flow dependence on IMF orientation: A 3-year Cluster statistical study. Journal of Geophysical Research, 110 ( A2 ), A02209. https://doi.org/10.1029/2004ja010804
dc.identifier.citedreferenceLockwood, M., Smith, M., & Smith, M. F. ( 1992 ). The variation of reconnection rate at the dayside magnetopause and cusp ion precipitation. Journal of Geophysical Research, 97 ( A10 ), 14841 – 14847. https://doi.org/10.1029/92ja01261
dc.identifier.citedreferenceLu, J., Zhang, H., Wang, M., Kabin, K., Zhou, Y., & Li, J. ( 2021 ). Energy transfer across the magnetopause under radial IMF conditions. The Astrophysical Journal, 920 ( 1 ), 52. https://doi.org/10.3847/1538-4357/ac15f4
dc.identifier.citedreferenceMays, M. L., Horton, W., Spencer, E., & Kozyra, J. U. ( 2009 ). Real-time predictions of geomagnetic storms and substorms: Use of the solar wind magnetosphere-ionosphere system model. Space Weather, 7 ( 7 ), 07001. https://doi.org/10.1029/2008sw000459
dc.identifier.citedreferenceMilan, S., Milan, S. E., Carter, J. A., Carter, J. A., Bower, G., Imber, S. M., et al. ( 2020 ). Dual-lobe reconnection and horse-collar auroras. Journal of Geophysical Research, 125 ( 10 ), e2020JA028567. https://doi.org/10.1029/2020ja028567
dc.identifier.citedreferenceMish, W. H., Green, J. L., Reph, M. G., & Peredo, M. ( 1995 ). ISTP science data systems and products. Space Science Reviews, 71 ( 1 ), 815 – 877. https://doi.org/10.1029/2020SW002551
dc.identifier.citedreferenceMukhopadhyay, A., Welling, D. T., Liemohn, M. W., Ridley, A. J., Chakraborty, S., & Anderson, B. J. ( 2020 ). Conductance model for extreme events impact of auroral conductance on space weather forecasts. Space Weather, 18 ( 11 ), e2020SW002551. https://doi.org/10.1002/essoar.10503207.1
dc.identifier.citedreferenceNewell, P. T., Sotirelis, T., Sotirelis, T., Liou, K., Meng, C.-I., Rich, F. J., & Rich, F. J. ( 2007 ). A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables. Journal of Geophysical Research, 112 ( A1 ), A01206. https://doi.org/10.1029/2006ja012015
dc.identifier.citedreferencePalmroth, M., Ganse, U., Pfau-Kempf, Y., Battarbee, M., Turc, L., Brito, T., et al. ( 2018 ). Vlasov methods in space physics and astrophysics. Living Reviews in Computational Astrophysics, 4 ( 1 ), 1. https://doi.org/10.1007/s41115-018-0003-2
dc.identifier.citedreferencePalmroth, M., Pulkkinen, T., Janhunen, P., & Wu, C.-C. ( 2003 ). Stormtime energy transfer in global MHD simulation. Journal of Geophysical Research, 108 ( A1 ), 1048. https://doi.org/10.1029/2002JA009446
dc.identifier.citedreferencePitout, F., Pitout, F., Bogdanova, Y., & Bogdanova, Y. V. ( 2021 ). The polar cusp seen by Cluster. Journal of Geophysical Research, 126 ( 9 ), e2021JA029582. https://doi.org/10.1029/2021ja029582
dc.identifier.citedreferencePulkkinen, T. ( 2007 ). Space weather: Terrestrial perspective. Living Reviews in Solar Physics, 4 ( 1 ), 1. https://doi.org/10.12942/lrsp-2007-1
dc.identifier.citedreferenceRidley, A. J., Gombosi, T. I., Sokolov, I. V., Toth, G., Knipp, D. J., & Welling, D. T. ( 2010 ). Numerical considerations in simulating the global magnetosphere. Annales Geophysicae, 28 ( 8 ), 1589 – 1614. https://doi.org/10.5194/angeo-28-1589-2010
dc.identifier.citedreferenceShidi, Q. A. A., Pulkkinen, T., Toth, G., Brenner, A., Zou, S., & Gjerloev, J. ( 2022 ). A large simulation set of geomagnetic storms—Can simulations predict ground magnetometer station observations of magnetic field perturbations? Space Weather, 20 ( 11 ), e2022SW003049. https://doi.org/10.1029/2022sw003049
dc.identifier.citedreferenceSiscoe, G. L., & Huang, T. S. ( 1985 ). Polar cap inflation and deflation. Journal of Geophysical Research, 90 ( A1 ), 543 – 547. https://doi.org/10.1029/ja090ia01p00543
dc.identifier.citedreferenceToth, G., van der Holst, B., van der Holst, B., Sokolov, I. V., De Zeeuw, D. L., De Zeeuw, D. L., et al. ( 2012 ). Adaptive numerical algorithms in space weather modeling. Journal of Computational Physics, 231 ( 3 ), 870 – 903. https://doi.org/10.1016/j.jcp.2011.02.006
dc.identifier.citedreferenceWelling, D. T., & Liemohn, M. W. ( 2014 ). Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. Journal of Geophysical Research: Space Physics, 119 ( 4 ), 2691 – 2705. https://doi.org/10.1002/2013ja019374
dc.identifier.citedreferenceXu, S., Liemohn, M. W., Dong, C., Mitchell, D. L., Bougher, S. W., & Ma, Y. ( 2016 ). Pressure and ion composition boundaries at Mars. Journal of Geophysical Research: Space Physics, 121 ( 7 ), 6417 – 6429. https://doi.org/10.1002/2016ja022644
dc.identifier.citedreferenceZhang, H., Lu, J., & Wang, M. ( 2023 ). Energy transfer across magnetopause under dawn–dusk IMFs. Scientific Reports, 13 ( 1 ), 7409. https://doi.org/10.1038/s41598-023-34082-2
dc.identifier.citedreferenceZhang, Y., Paxton, L. J., Schaefer, R. K., & Swartz, W. H. ( 2022 ). Thermospheric conditions associated with the loss of 40 Starlink satellites. Space Weather, 20 ( 10 ), e2022SW003168. https://doi.org/10.1029/2022sw003168
dc.identifier.citedreferenceAkasofu, S. ( 1981 ). Energy coupling between the solar wind and the magnetosphere. Space Science Reviews, 28 ( 2 ), 121 – 190. https://doi.org/10.1007/bf00218810
dc.identifier.citedreferenceAla-Lahti, M., Pulkkinen, T. I., Pfau-Kempf, Y., Grandin, M., & Palmroth, M. ( 2022 ). Energy flux through the magnetopause during flux transfer events in hybrid-Vlasov 2D simulations. Geophysical Research Letters, 49 ( 19 ), e2022GL100079. https://doi.org/10.1029/2022GL100079
dc.identifier.citedreferenceBagby-Wright, C.-A., Welling, D., Lopez, R., Katus, R., & Walsh, B. ( 2023 ). Recirculation of plasmasphere material during idealized magnetic storms. Frontiers in Physics, 11, 1146035. https://doi.org/10.3389/fphy.2023.1146035
dc.identifier.citedreferenceBrenner, A. ( 2023 ). Dissecting Earth’s magnetosphere: 3D energy transport in a simulation of a real storm event [Dataset]. Deep Blue Data. https://doi.org/10.7302/wveb-jk73
dc.identifier.citedreferenceBrenner, A., Pulkkinen, T. I., Al Shidi, Q., & Toth, G. ( 2021 ). Stormtime energetics: Energy transport across the magnetopause in a global MHD simulation. Frontiers in Astronomy and Space Sciences, 8, 756732. https://doi.org/10.3389/fspas.2021.756732
dc.identifier.citedreferenceChen, Y., Toth, G., Cassak, P., Jia, X., Gombosi, T. I., Slavin, J. A., et al. ( 2017 ). Global three dimensional simulation of Earth’s dayside reconnection using a two way coupled magnetohydrodynamics with embedded particle in cell model initial results 3D MHD epic simulation of magnetosphere. Journal of Geophysical Research: Space Physics, 122 ( 10 ), 10318 – 10335. https://doi.org/10.1002/2017ja024186
dc.identifier.citedreferenceDungey, J. W. ( 1961 ). Interplanetary magnetic field and the auroral zones. Physical Review Letters, 6 ( 2 ), 47 – 48. https://doi.org/10.1103/PhysRevLett.6.47
dc.identifier.citedreferenceEscoubet, C., & Bosqued, J.-M. ( 1989 ). The influence of IMF- B z and/or AE on the polar cusp: An overview of observations from the AUREOL-3 satellite. Planetary and Space Science, 37 ( 5 ), 609 – 626. https://doi.org/10.1016/0032-0633(89)90100-1
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.