Bulk-Switching Memristor-Based Compute-In-Memory Module for Deep Neural Network Training
dc.contributor.author | Wu, Yuting | |
dc.contributor.author | Wang, Qiwen | |
dc.contributor.author | Wang, Ziyu | |
dc.contributor.author | Wang, Xinxin | |
dc.contributor.author | Ayyagari, Buvna | |
dc.contributor.author | Krishnan, Siddarth | |
dc.contributor.author | Chudzik, Michael | |
dc.contributor.author | Lu, Wei D. | |
dc.date.accessioned | 2023-12-04T20:29:29Z | |
dc.date.available | 2024-12-04 15:29:26 | en |
dc.date.available | 2023-12-04T20:29:29Z | |
dc.date.issued | 2023-11 | |
dc.identifier.citation | Wu, Yuting; Wang, Qiwen; Wang, Ziyu; Wang, Xinxin; Ayyagari, Buvna; Krishnan, Siddarth; Chudzik, Michael; Lu, Wei D. (2023). "Bulk-Switching Memristor-Based Compute-In-Memory Module for Deep Neural Network Training." Advanced Materials 35(46): n/a-n/a. | |
dc.identifier.issn | 0935-9648 | |
dc.identifier.issn | 1521-4095 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/191657 | |
dc.description.abstract | The constant drive to achieve higher performance in deep neural networks (DNNs) has led to the proliferation of very large models. Model training, however, requires intensive computation time and energy. Memristor-based compute-in-memory (CIM) modules can perform vector-matrix multiplication (VMM) in place and in parallel, and have shown great promises in DNN inference applications. However, CIM-based model training faces challenges due to non-linear weight updates, device variations, and low-precision. In this work, a mixed-precision training scheme is experimentally implemented to mitigate these effects using a bulk-switching memristor-based CIM module. Low-precision CIM modules are used to accelerate the expensive VMM operations, with high-precision weight updates accumulated in digital units. Memristor devices are only changed when the accumulated weight update value exceeds a pre-defined threshold. The proposed scheme is implemented with a system-onchip of fully integrated analog CIM modules and digital sub-systems, showing fast convergence of LeNet training to 97.73%. The efficacy of training larger models is evaluated using realistic hardware parameters and verifies that CIM modules can enable efficient mix-precision DNN training with accuracy comparable to full-precision software-trained models. Additionally, models trained on chip are inherently robust to hardware variations, allowing direct mapping to CIM inference chips without additional re-training.A compute-in-memory module integrated with bulk-switching memristor arrays is demonstrated. A hardware–software co-designed system is constructed to accelerate the neural network training and relax stringent requirements for device precision and endurance. The on-chip trained networks are able to reach software-comparable accuracies and exhibit robustness to weight perturbation when transferred to a new chip. | |
dc.publisher | Ithaca | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | deep neural networks | |
dc.subject.other | mixed precision training | |
dc.subject.other | deep neural network training | |
dc.subject.other | memristors | |
dc.subject.other | in-memory computing | |
dc.title | Bulk-Switching Memristor-Based Compute-In-Memory Module for Deep Neural Network Training | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Engineering (General) | |
dc.subject.hlbsecondlevel | Materials Science and Engineering | |
dc.subject.hlbtoplevel | Engineering | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191657/1/adma202305465_am.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191657/2/adma202305465-sup-0001-SuppMat.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191657/3/adma202305465.pdf | |
dc.identifier.doi | 10.1002/adma.202305465 | |
dc.identifier.source | Advanced Materials | |
dc.identifier.citedreference | a) M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers, T. Tuma, C. Bekas, A. Curioni, E. Eleftheriou, Nat. Electron. 2018, 1, 246; b) S. Ambrogio, P. Narayanan, H. Tsai, R. M. Shelby, I. Boybat, C. Di Nolfo, S. Sidler, M. Giordano, M. Bodini, N. C. P. Farinha, B. Killeen, C. Cheng, Y. Jaoudi, G. W. Burr, Nature 2018, 558, 60. | |
dc.identifier.citedreference | a) J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Proc. 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Ithaca, New York, 2019, 1, 4171 - 4186; b) T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, NIPS 2020, 33, 1877. | |
dc.identifier.citedreference | a) C. Szegedy, A. Toshev, D. Erhan, Advances in neural information processing systems 2013, 26, 1880; b) A. Voulodimos, N. Doulamis, A. Doulamis, E. Protopapadakis, Comput. Intell. Neurosci. 2018, 2018, 7068349. | |
dc.identifier.citedreference | J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool, R. Bates, A. Žídek, A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals, et al., Nature 2021, 596, 583. | |
dc.identifier.citedreference | a) A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, arXiv preprint arXiv:1704.04861, Ithaca, New York, 2017; b) S. Han, H. Mao, W. J. Dally, arXiv preprint arXiv:1510.00149, Ithaca, New York, 2015; c) X. Zhang, X. Zhou, M. Lin, J. Sun, Proc. IEEE conf. Computer Vision and Pattern Recognition, IEEE, New York City, 2018, 6848; d) F.-H. Meng, X. Wang, Z. Wang, E. Y.-J. Lee, W. D. Lu, IEEE J. Emerg. Sel. Top Circuits Syst. 2022, 12, 858. | |
dc.identifier.citedreference | a) F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn, W. D. Lu, Nat. Electron. 2019, 2, 290; b) C.-X. Xue, T.-Y. Huang, J.-S. Liu, T.-W. Chang, H.-Y. Kao, J.-H. Wang, T.-W. Liu, S.-Y. Wei, S.-P. Huang, W.-C. Wei, IEEE International Solid-State Circuits Conference-(ISSCC), IEEE, New York City, 2020, 244; c) X. Wang, Y. Wu, W. D. Lu, 2021 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2021, pp. 12.2.1 - 12.2.4; d) J. M. Correll, L. Jie, S. Song, S. Lee, J. Zhu, W. Tang, L. Wormald, J. Erhardt, N. Breil, R. Quon, presented at 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, June 2022. | |
dc.identifier.citedreference | a) Y. Yang, P. Gao, S. Gaba, T. Chang, X. Pan, W. Lu, Nat. Commun. 2012, 3, 732; b) Z. Wang, S. Joshi, S. E. Savel’ev, H. Jiang, R. Midya, P. Lin, M. Hu, N. Ge, J. P. Strachan, Z. Li, Q. Wu, M. Barnell, G.-L. Li, H. L. Xin, R. S. Williams, Q. Xia, J. J. Yang, Nat. Mater. 2017, 16, 101; c) Y. M. Sun, C. Song, J. Yin, L. L. Qiao, R. Wang, Z. Y. Wang, X. Z. Chen, S. Q. Yin, M. S. Saleem, H. Q. Wu, F. Zeng, F. Pan, Appl. Phys. Lett. 2019, 114, 193502; d) C.-Y. Lin, J. Chen, P. o.-H. Chen, T.-C. Chang, Y. Wu, J. K. Eshraghian, J. Moon, S. Yoo, Y. u.-H. Wang, W.-C. Chen, Z.-Y. Wang, H.-C. Huang, Y. i. Li, X. Miao, W. D. Lu, S. M. Sze, Small 2020, 16, 2003964. | |
dc.identifier.citedreference | a) S. Yoo, Y. Wu, Y. Park, W. D. Lu, Adv. Electron. Mater. 2022, 8, 2101025; b) D.-H. Kwon, K. M. Kim, J. H. Jang, J. M. Jeon, M. H. Lee, G. H. Kim, X.-S. Li, G.-S. u. Park, B. Lee, S. Han, M. Kim, C. S. Hwang, Nat. Nanotechnol. 2010, 5, 148; c) G.-S. u. Park, Y. B. Kim, S. Y. Park, X. S. Li, S. Heo, M.-J. Lee, M. Chang, J. i. H. Kwon, M. Kim, U.-I. n. Chung, R. Dittmann, R. Waser, K. Kim, Nat. Commun. 2013, 4, 2382. | |
dc.identifier.citedreference | Y. Wu, X. Wang, W. D. Lu, Semicond. Sci. Technol. 2021, 37, 024003. | |
dc.identifier.citedreference | a) F. Cai, S.-H. Yen, A. Uppala, L. Thomas, T. Liu, P. Fu, X. Zhang, A. Low, D. Kamalanathan, J. Hsu, B. Ayyagari-Sangamalli, Adv. Intell. Syst. Comput. 2022, 4, 2200014; b) Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao, C.-X. Xue, W.-H. Chen, IEEE International, IEEE, New York City, 2020, 500. | |
dc.identifier.citedreference | a) C. Zhu, S. Han, H. Mao, W. J. Dally, arXiv preprint arXiv:1612.01064 Ithaca, New York, 2016; b) H. Alemdar, V. Leroy, A. Prost-Boucle, F. Pétrot, International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 2017, pp. 2547 - 2554 https://doi.org/10.1109/IJCNN.2017.7966166; c) I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, NIPS 2016, 29, 2625. | |
dc.identifier.citedreference | a) M. Courbariaux, Y. Bengio, J.-P. David, NIPS 2015, 28; b) P. Merolla, R. Appuswamy, J. Arthur, S. K. Esser, D. Modha, arXiv preprint arXiv:1606.01981, Ithaca, New York, 2016; c) M. Rastegari, V. Ordonez, J. Redmon, A. Farhadi, In European conference on computer vision, Cham: Springer International Publishing, Ithaca, New York, 2016, pp. 525 - 542; d) I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, J. Mach. Learn. Res. 2017, 18, 6869; e) H. Zhang, J. Li, K. Kara, D. Alistarh, J. Liu, C. Zhang, in PMLR, Proceedings of Machine Learning Research, (Eds.: P. Doina, T. Yee Whye ), 2017, Vol. 70, 4035; f) P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh, arXiv preprint arXiv:1710.03740, Ithaca, New York, 2017. | |
dc.identifier.citedreference | a) M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang, J. i. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo, U.-I. n. Chung, I. n.-K. Yoo, K. Kim, Nat. Mater. 2011, 10, 625; b) K. M. Kim, S. R. Lee, S. Kim, M. Chang, C. S. Hwang, Adv. Funct. Mater. 2015, 25, 1527; c) L. i.-H. Li, K.-H. Xue, L.-Q. Zou, J.-H. Yuan, H. Sun, X. Miao, Appl. Phys. Lett. 2021, 119, 153505; d) Q. Xia, J. J. Yang, Nat. Mater. 2019, 18, 309; e) H. Jiang, L. Han, P. Lin, Z. Wang, M. H. Jang, Q. Wu, M. Barnell, J. J. Yang, H. L. Xin, Q. Xia, Sci. Rep. 2016, 6, 28525. | |
dc.identifier.citedreference | V. Joshi, M. Le Gallo, S. Haefeli, I. Boybat, S. R. Nandakumar, C. Piveteau, M. Dazzi, B. Rajendran, A. Sebastian, E. Eleftheriou, Nat. Commun. 2020, 11, 2473. | |
dc.identifier.citedreference | a) S. Ambrogio, S. Balatti, A. Cubeta, A. Calderoni, N. Ramaswamy, D. Ielmini, IEEE Trans. Electron Devices 2014, 61, 2912; b) H. Jiang, D. Belkin, S. E. Savel’ev, S. Lin, Z. Wang, Y. Li, S. Joshi, R. Midya, C. Li, M. Rao, M. Barnell, Q. Wu, J. J. Yang, Q. Xia, Nat. Commun. 2017, 8, 882; c) M. Le Gallo, A. Sebastian, J. Phys. D: Appl. Phys. 2020, 53, 213002. | |
dc.identifier.citedreference | S. R. Nandakumar, M. Le Gallo, C. Piveteau, V. Joshi, G. Mariani, I. Boybat, G. Karunaratne, R. Khaddam-Aljameh, U. Egger, A. Petropoulos, T. Antonakopoulos, B. Rajendran, A. Sebastian, E. Eleftheriou, Front. Neurosci. 2020, 14, 406. | |
dc.identifier.citedreference | a) E. J. Fuller, S. T. Keene, A. Melianas, Z. Wang, S. Agarwal, Y. Li, Y. Tuchman, C. D. James, M. J. Marinella, J. J. Yang, A. Salleo, A. A. Talin, Science 2019, 364, 570; b) Y. Van De Burgt, E. Lubberman, E. J. Fuller, S. T. Keene, G. C. Faria, S. Agarwal, M. J. Marinella, A. Alec Talin, A. Salleo, Nat. Mater. 2017, 16, 414. | |
dc.identifier.citedreference | D. Veksler, G. Bersuker, L. Vandelli, A. Padovani, L. Larcher, A. Muraviev, B. Chakrabarti, E. Vogel, D. Gilmer, P. Kirsch, presented at 2013 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, April, 2013. | |
dc.identifier.citedreference | Y. Wu, F. Cai, L. Thomas, T. Liu, A. Nourbakhsh, J. Hebding, E. Smith, R. Quon, R. Smith, A. Kumar, presented at 2022 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, December, 2022. | |
dc.identifier.citedreference | B. Gao, H. Wu, W. Wu, X. Wang, P. Yao, Y. Xi, W. Zhang, N. Deng, P. Huang, X. Liu, 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2019, 1, pp. 4.4.1 - 4.4.4 2017. | |
dc.identifier.citedreference | Q. Wang, Y. Park, W. D. Lu, Adv. Intell. Syst. Comput. 2022, 4, 2100199. | |
dc.identifier.citedreference | Y. Bengio, N. Léonard, A. Courville, arXiv preprint arXiv:1308.3432, Ithaca, New York, 2013. | |
dc.identifier.citedreference | I. Loshchilov, F. Hutter, arXiv:1711.05101, Ithaca, New York, 2017. | |
dc.identifier.citedreference | P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, H. e. Qian, Nature 2020, 577, 641. | |
dc.identifier.citedreference | W. Wan, R. Kubendran, C. Schaefer, S. B. Eryilmaz, W. Zhang, D. Wu, S. Deiss, P. Raina, H. e. Qian, B. Gao, S. Joshi, H. Wu, H.-S. P. Wong, G. Cauwenberghs, Nature 2022, 608, 504. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.