Show simple item record

Reduced global plant respiration due to the acclimation of leaf dark respiration coupled with photosynthesis

dc.contributor.authorRen, Yanghang
dc.contributor.authorWang, Han
dc.contributor.authorHarrison, Sandy P.
dc.contributor.authorPrentice, I. Colin
dc.contributor.authorAtkin, Owen K.
dc.contributor.authorSmith, Nicholas G.
dc.contributor.authorMengoli, Giulia
dc.contributor.authorStefanski, Artur
dc.contributor.authorReich, Peter B.
dc.date.accessioned2024-01-04T21:56:39Z
dc.date.available2025-02-04 16:56:37en
dc.date.available2024-01-04T21:56:39Z
dc.date.issued2024-01
dc.identifier.citationRen, Yanghang; Wang, Han; Harrison, Sandy P.; Prentice, I. Colin; Atkin, Owen K.; Smith, Nicholas G.; Mengoli, Giulia; Stefanski, Artur; Reich, Peter B. (2024). "Reduced global plant respiration due to the acclimation of leaf dark respiration coupled with photosynthesis." New Phytologist (2): 578-591.
dc.identifier.issn0028-646X
dc.identifier.issn1469-8137
dc.identifier.urihttps://hdl.handle.net/2027.42/191791
dc.publisherSpringer International
dc.publisherWiley Periodicals, Inc.
dc.subject.otherland surface model
dc.subject.otherplant acclimation
dc.subject.othercarboxylation capacity
dc.subject.otherdark respiration
dc.subject.othereco-evolutionary optimality
dc.subject.otherglobal carbon cycle
dc.subject.otherclimate change
dc.titleReduced global plant respiration due to the acclimation of leaf dark respiration coupled with photosynthesis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191791/1/nph19355-sup-0001-Supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191791/2/nph19355.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191791/3/nph19355_am.pdf
dc.identifier.doi10.1111/nph.19355
dc.identifier.sourceNew Phytologist
dc.identifier.citedreferenceSimpson E, Cooke RJ, Davies DD. 1981. Measurement of protein degradation in leaves of Zea mays using [3H]acetic anhydride and tritiated water. Plant Physiology 67: 1214 – 1219.
dc.identifier.citedreferenceReich PB, Sendall KM, Stefanski A, Wei X, Rich RL, Montgomery RA. 2016. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531: 633 – 636.
dc.identifier.citedreferenceReich PB, Stefanski A, Rich RL, Sendall KM, Wei X, Zhao C, Hou J, Montgomery RA, Bermudez R. 2021. Assessing the relevant time frame for temperature acclimation of leaf dark respiration: a test with 10 boreal and temperate species. Global Change Biology 27: 2945 – 2958.
dc.identifier.citedreferenceReich PB, Tjoelker MG, Pregitzer KS, Wright IJ, Oleksyn J, Machado J-L. 2008. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecology Letters 11: 793 – 801.
dc.identifier.citedreferenceRogers A. 2014. The use and misuse of V c,max in earth system models. Photosynthesis Research 119: 15 – 29.
dc.identifier.citedreferenceScott HG, Smith NG. 2022. A model of C 4 photosynthetic acclimation based on least-cost optimality theory suitable for Earth System Model incorporation. Journal of Advances in Modeling Earth Systems 14: e2021MS002470.
dc.identifier.citedreferenceSearle SY, Thomas S, Griffin KL, Horton T, Kornfeld A, Yakir D, Hurry V, Turnbull MH. 2011. Leaf respiration and alternative oxidase in field-grown alpine grasses respond to natural changes in temperature and light. New Phytologist 189: 1027 – 1039.
dc.identifier.citedreferenceSmith NG, Dukes JS. 2013. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO 2. Global Change Biology 19: 45 – 63.
dc.identifier.citedreferenceSmith NG, Dukes JS. 2017. LCE: leaf carbon exchange data set for tropical, temperate, and boreal species of North and Central America. Ecology 98: 2978.
dc.identifier.citedreferenceSmith NG, Dukes JS. 2018. Drivers of leaf carbon exchange capacity across biomes at the continental scale. Ecology 99: 1610 – 1620.
dc.identifier.citedreferenceSmith NG, Keenan TF, Prentice IC, Wang H, Wright IJ, Niinemets U, Crous KY, Domingues TF, Guerrieri R, Ishida FY et al. 2019a. Global photosynthetic capacity is optimized to the environment. Ecology Letters 22: 506 – 517.
dc.identifier.citedreferenceSmith NG, Li G, Dukes JS. 2019b. Short-term thermal acclimation of dark respiration is greater in non-photosynthetic than in photosynthetic tissues. AoB Plants 11: plz064.
dc.identifier.citedreferenceSpreitzer RJ, Salvucci ME. 2002. R ubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annual Review of Plant Biology 53: 449 – 475.
dc.identifier.citedreferenceStill CJ, Berry JA, Collatz GJ, DeFries RS. 2003. Global distribution of C 3 and C 4 vegetation: carbon cycle implications. Global Biogeochemical Cycles 17: 1006.
dc.identifier.citedreferenceStitt M, Schulze D. 1994. Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant, Cell & Environment 17: 465 – 487.
dc.identifier.citedreferenceTakashima T, Hikosaka K, Hirose T. 2004. Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant, Cell & Environment 27: 1047 – 1054.
dc.identifier.citedreferenceTcherkez G, Gauthier P, Buckley TN, Busch FA, Barbour MM, Bruhn D, Heskel MA, Gong XY, Crous KY, Griffin K et al. 2017. Leaf day respiration: low CO 2 flux but high significance for metabolism and carbon balance. New Phytologist 216: 986 – 1001.
dc.identifier.citedreferenceTjoelker MG, Oleksyn J, Reich PB, Żytkowiak R. 2008. Coupling of respiration, nitrogen, and sugars underlies convergent temperature acclimation in Pinus banksiana across wide-ranging sites and populations. Global Change Biology 14: 782 – 797.
dc.identifier.citedreferenceTurnbull MH, Murthy R, Griffin KL. 2002. The relative impacts of daytime and night-time warming on photosynthetic capacity in Populus deltoides. Plant, Cell & Environment 25: 1729 – 1737.
dc.identifier.citedreferenceVanderwel MC, Slot M, Lichstein JW, Reich PB, Kattge J, Atkin OK, Bloomfield KJ, Tjoelker MG, Kitajima K. 2015. Global convergence in leaf respiration from estimates of thermal acclimation across time and space. New Phytologist 207: 1026 – 1037.
dc.identifier.citedreferenceWang H, Atkin OK, Keenan TF, Smith NG, Wright IJ, Bloomfield KJ, Kattge J, Reich PB, Prentice IC. 2020. Acclimation of leaf respiration consistent with optimal photosynthetic capacity. Global Change Biology 26: 2573 – 2583.
dc.identifier.citedreferenceWang H, Prentice IC, Cornwell WM, Keenan TF, Davis TW, Wright IJ, Evans BJ, Peng C. 2017a. Towards a universal model for carbon dioxide uptake by plants. Nature Plants 3: 734 – 741.
dc.identifier.citedreferenceWang H, Prentice IC, Davis TW, Keenan TF, Wright IJ, Peng C. 2017b. Photosynthetic responses to altitude: an explanation based on optimality principles. New Phytologist 213: 976 – 982.
dc.identifier.citedreferenceWhitehead D, Griffin KL, Turnbull MH, Tissue DT, Engel VC, Brown KJ, Schuster WSF, Walcroft AS. 2004. Response of total night-time respiration to differences in total daily photosynthesis for leaves in a Quercus rubra L. canopy: implications for modelling canopy CO 2 exchange. Global Change Biology 10: 925 – 938.
dc.identifier.citedreferenceWright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA et al. 2017. Global climatic drivers of leaf size. Science 357: 917 – 921.
dc.identifier.citedreferenceYamori W, Suzuki K, Noguchi K, Nakai M, Terashima I. 2006. Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant, Cell & Environment 29: 1659 – 1670.
dc.identifier.citedreferenceYuan H, Dai Y, Xiao Z, Ji D, Shangguan W. 2011. Reprocessing the MODIS Leaf Area Index products for land surface and climate modelling. Remote Sensing of Environment 115: 1171 – 1187.
dc.identifier.citedreferenceZacksenhouse M, Nemets S, Lebedev MA, Nicolelis MAL. 2009. Robust satisficing linear regression: performance/robustness trade-off and consistency criterion. Mechanical Systems and Signal Processing 23: 1954 – 1964.
dc.identifier.citedreferenceZhu L, Bloomfield KJ, Asao S, Tjoelker MG, Egerton JJG, Hayes L, Weerasinghe LK, Creek D, Griffin KL, Hurry V et al. 2021. Acclimation of leaf respiration temperature responses across thermally contrasting biomes. New Phytologist 229: 1312 – 1325.
dc.identifier.citedreferenceZhu Q, Riley WJ, Tang J, Collier N, Hoffman FM, Yang X, Bisht G. 2019. Representing nitrogen, phosphorus, and carbon interactions in the E3SM land model: development and global benchmarking. Journal of Advances in Modeling Earth Systems 11: 2238 – 2258.
dc.identifier.citedreferenceAtkin OK, Atkinson LJ, Fisher RA, Campbell CD, Zaragoza-Castells J, Pitchford JW, Woodward FI, Hurry V. 2008. Using temperature-dependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate–vegetation model. Global Change Biology 14: 2709 – 2726.
dc.identifier.citedreferenceAtkin OK, Bahar NHA, Bloomfield KJ, Griffin KL, Heskel MA, Huntingford C, de la Torre AM, Turnbull MH. 2017. Leaf respiration in terrestrial biosphere models. In: Tcherkez G, Ghashghaie J, eds. Plant respiration: metabolic fluxes and carbon balance. Cham, Switzerland: Springer International, 107 – 142.
dc.identifier.citedreferenceAtkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG, Cernusak LA, Cosio EG et al. 2015. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytologist 206: 614 – 636.
dc.identifier.citedreferenceAtkin OK, Holly C, Ball MC. 2000. Acclimation of snow gum ( Eucalyptus pauciflora ) leaf respiration to seasonal and dirunal variations in temperature: the immportance of changes in the capacity and temperature sensitivity of respiration. Plant, Cell & Environment 23: 15 – 26.
dc.identifier.citedreferenceAtkin OK, Tjoelker MG. 2003. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8: 343 – 351.
dc.identifier.citedreferenceBallantyne A, Smith W, Anderegg W, Kauppi P, Sarmiento J, Tans P, Shevliakova E, Pan Y, Poulter B, Anav A et al. 2017. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nature Climate Change 7: 148 – 152.
dc.identifier.citedreferenceBallantyne AP, Alden CB, Miller JB, Tans PP, White JWC. 2012. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488: 70 – 72.
dc.identifier.citedreferenceBernacchi CJ, Pimentel C, Long SP. 2003. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell & Environment 26: 1419 – 1430.
dc.identifier.citedreferenceBernacchi CJ, Singsaas EL, Pimentel C, Portis AR Jr, Long SP. 2001. Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant, Cell & Environment 24: 253 – 259.
dc.identifier.citedreferenceBerry JO, Nikolau BJ, Carr JP, Klessig DF. 1986. Translational regulation of light-induced ribulose 1,5-bisphosphate carboxylase gene expression in amaranth. Molecular and Cellular Biology 6: 2347 – 2353.
dc.identifier.citedreferenceBolstad PV, Reich P, Lee T. 2003. Rapid temperature acclimation of leaf respiration rates in Quercus alba and Quercus rubra. Tree Physiology 23: 969 – 976.
dc.identifier.citedreferenceBonan GB, Levis S. 2010. Quantifying carbon-nitrogen feedbacks in the Community Land Model (CLM4). Geophysical Research Letters 37: L07401.
dc.identifier.citedreferenceBruhn D, Newman F, Hancock M, Povlsen P, Slot M, Sitch S, Drake J, Weedon GP, Clark DB, Pagter M et al. 2022. Nocturnal plant respiration is under strong non-temperature control. Nature Communications 13: 5650.
dc.identifier.citedreferenceBuck AL. 1981. New equations for computing vapor pressure and enhancement factor. Journal of Applied Meteorology and Climatology 20: 1527 – 1532.
dc.identifier.citedreferenceButler EE, Wythers KR, Flores-Moreno H, Chen M, Datta A, Ricciuto DM, Atkin OK, Katge J, Thornton PE, Banerjee A et al. 2021. Updated respiration routines alter spatio-temporal patterns of carbon cycling in a global land surface model. Environmental Research Letters 16: 104015.
dc.identifier.citedreferenceCai W, Prentice IC. 2020. Recent trends in gross primary production and their drivers: analysis and modelling at flux-site and global scales. Environmental Research Letters 15: 124050.
dc.identifier.citedreferenceCampbell C, Atkinson L, Zaragoza-Castells J, Lundmark M, Atkin O, Hurry V. 2007. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytologist 176: 375 – 389.
dc.identifier.citedreferenceCampioli M, Malhi Y, Vicca S, Luyssaert S, Papale D, Peñuelas J, Reichstein M, Migliavacca M, Arain MA, Janssens IA. 2016. Evaluating the convergence between eddy-covariance and biometric methods for assessing carbon budgets of forests. Nature Communications 7: 13717.
dc.identifier.citedreferenceChen J-L, Reynolds JF, Harley PC, Tenhunen JD. 1993. Coordination theory of leaf nitrogen distribution in a canopy. Oecologia 93: 63 – 69.
dc.identifier.citedreferenceLamport DTA. 1966. The protein component of primary cell walls. Advances in Botanical Research 2: 151 – 218.
dc.identifier.citedreferenceClark DB, Mercado LM, Sitch S, Jones CD, Gedney N, Best MJ, Pryor M, Rooney GG, Essery RLH, Blyth E et al. 2011. The Joint UK Land Environment Simulator (JULES), model description – Part 2: Carbon fluxes and vegetation dynamics. Geoscitific Model Development 4: 701 – 722.
dc.identifier.citedreferenceCollalti A, Ibrom A, Stockmarr A, Cescatti A, Alkama R, Fernández-Martínez M, Matteucci G, Sitch S, Friedlingstein P, Ciais P et al. 2020. Forest production efficiency increases with growth temperature. Nature Communications 11: 5322.
dc.identifier.citedreferenceCollatz GJ, Ball JT, Grivet C, Berry JA. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54: 107 – 136.
dc.identifier.citedreferenceCox DTC, Maclean IMD, Gardner AS, Gaston KJ. 2020. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Global Change Biology 26: 7099 – 7111.
dc.identifier.citedreferenceCrous KY, Uddling J, De Kauwe MG. 2022. Temperature responses of photosynthesis and respiration in evergreen trees from boreal to tropical latitudes. New Phytologist 234: 353 – 374.
dc.identifier.citedreferenceCucchi M, Weedon GP, Amici A, Bellouin N, Lange S, Müller Schmied H, Hersbach H, Buontempo C. 2020. WFDE5: bias-adjusted ERA5 reanalysis data for impact studies. Earth System Science Data 12: 2097 – 2120.
dc.identifier.citedreferenceDavy R, Esau I, Chernokulsky A, Outten S, Zilitinkevich S. 2017. Diurnal asymmetry to the observed global warming. International Journal of Climatology 37: 79 – 93.
dc.identifier.citedreferenceDi Stefano E, Agyei D, Njoku EN, Udenigwe CC. 2018. Plant RuBisCo: an underutilized protein for food applications. Journal of the American Oil Chemists’ Society 95: 1063 – 1074.
dc.identifier.citedreferenceDong N, Prentice IC, Evans BJ, Caddy-Retalic S, Lowe AJ, Wright IJ. 2017. Leaf nitrogen from first principles: field evidence for adaptive variation with climate. Biogeosciences 14: 481 – 495.
dc.identifier.citedreferenceDong N, Wright IJ, Chen JM, Luo X, Wang H, Keenan TF, Smith NG, Prentice IC. 2022. Rising CO 2 and warming reduce global canopy demand for nitrogen. New Phytologist 235: 1692 – 1700.
dc.identifier.citedreferenceDrake JE, Tjoelker MG, Aspinwall MJ, Reich PB, Barton CVM, Medlyn BE, Duursma RA. 2016. Does physiological acclimation to climate warming stabilize the ratio of canopy respiration to photosynthesis? New Phytologist 211: 850 – 863.
dc.identifier.citedreferenceFarquhar GD, von Caemmerer S, Berry JA. 1980. A biochemical model of photosynthetic CO 2 assimilation in leaves of C3 species. Planta 149: 78 – 90.
dc.identifier.citedreferenceFriedlingstein P, Jones MW, O’Sullivan M, Andrew RM, Bakker DCE, Hauck J, Le Quéré C, Peters GP, Peters W, Pongratz J et al. 2022. Global carbon budget 2021. Earth System Science Data 14: 1917 – 2005.
dc.identifier.citedreferenceGates DM. 1968. Transpiration and leaf temperature. Annual Review of Plant Physiology 19: 211 – 238.
dc.identifier.citedreferenceHamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH. 2002. Forest carbon balance under elevated CO 2. Oecologia 131: 250 – 260.
dc.identifier.citedreferenceHarrison SP, Cramer W, Franklin O, Prentice IC, Wang H, Brännström Å, de Boer H, Dieckmann U, Joshi J, Keenan TF et al. 2021. Eco-evolutionary optimality as a means to improve vegetation and land-surface models. New Phytologist 231: 2125 – 2141.
dc.identifier.citedreferenceHaverd V, Smith B, Nieradzik L, Briggs PR, Woodgate W, Trudinger CM, Canadell JG, Cuntz M. 2018. A new version of the CABLE land surface model (subversion revision r4601) incorporating land use and land cover change, woody vegetation demography, and a novel optimisation-based approach to plant coordination of photosynthesis. Geoscientific Model Development 11: 2995 – 3026.
dc.identifier.citedreferenceHaxeltine A, Prentice IC. 1996. A general model for the light-use efficiency of primary production. Functional Ecology 10: 551 – 561.
dc.identifier.citedreferenceHe Y, Piao S, Li X, Chen A, Qin D. 2018. Global patterns of vegetation carbon use efficiency and their climate drivers deduced from MODIS satellite data and process-based models. Agricultural and Forest Meteorology 256-257: 150 – 158.
dc.identifier.citedreferenceHeskel MA, O’Sullivan OS, Reich PB, Tjoelker MG, Weerasinghe LK, Penillard A, Egerton JJG, Creek D, Bloomfield KJ, Xiang J et al. 2016. Convergence in the temperature response of leaf respiration across biomes and plant functional types. Proceedings of the National Academy of Sciences, USA 113: 3832 – 3837.
dc.identifier.citedreferenceHuntingford C, Atkin OK, Martinez-de la Torre A, Mercado LM, Heskel MA, Harper AB, Bloomfield KJ, O’Sullivan OS, Reich PB, Wythers KR et al. 2017. Implications of improved representations of plant respiration in a changing climate. Nature Communications 8: 1602.
dc.identifier.citedreferenceImhoff M, Schettlinger K, Fried R, Gather U, Siebig S, Wrede C. 2007. Robust regression methods for intensive care monitoring. Critical Care 11: P438.
dc.identifier.citedreferenceJiang C, Ryu Y, Wang H, Keenan TF. 2020. An optimality-based model explains seasonal variation in C 3 plant photosynthetic capacity. Global Change Biology 26: 6493 – 6510.
dc.identifier.citedreferenceKrinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles 19: GB1015.
dc.identifier.citedreferenceKumarathunge DP, Medlyn BE, Drake JE, Tjoelker MG, Aspinwall MJ, Battaglia M, Cano FJ, Carter KR, Cavaleri MA, Cernusak LA et al. 2019. Acclimation and adaptation components of the temperature dependence of plant photosynthesis at the global scale. New Phytologist 222: 768 – 784.
dc.identifier.citedreferenceLee TD, Reich PB, Bolstad PV. 2005. Acclimation of leaf respiration to temperature is rapid and related to specific leaf area, soluble sugars and leaf nitrogen across three temperate deciduous tree species. Functional Ecology 19: 640 – 647.
dc.identifier.citedreferenceLeigh A, Sevanto S, Close JD, Nicotra AB. 2017. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions? Plant, Cell & Environment 40: 237 – 248.
dc.identifier.citedreferenceLombardozzi DL, Bonan GB, Smith NG, Dukes JS, Fisher RA. 2015. Temperature acclimation of photosynthesis and respiration: a key uncertainty in the carbon cycle-climate feedback. Geophysical Research Letters 42: 8624 – 8631.
dc.identifier.citedreferenceMaire V, Martre P, Kattge J, Gastal F, Esser G, Fontaine S, Soussana JF. 2012. The coordination of leaf photosynthesis links C and N fluxes in C 3 plant species. PLoS ONE 7: e38345.
dc.identifier.citedreferenceMÄKelÄ A, Pulkkinen M, Kolari P, Lagergren F, Berbigier P, Lindroth A, Loustau D, Nikinmaa E, Vesala T, Hari P. 2008. Developing an empirical model of stand GPP with the LUE approach: analysis of eddy covariance data at five contrasting conifer sites in Europe. Global Change Biology 14: 92 – 108.
dc.identifier.citedreferenceMeek DW, Hatfield JL, Howell TA, Idso SB, Reginato RJ. 1984. A generalized relationship between photosynthetically active radiation and solar radiation. Agronomy Journal 76: 939 – 945.
dc.identifier.citedreferenceMengoli G, Agustí-Panareda A, Boussetta S, Harrison SP, Trotta C, Prentice IC. 2022. Ecosystem photosynthesis in land-surface models: a first-principles approach incorporating acclimation. Journal of Advances in Modeling Earth Systems 14: e2021MS002767.
dc.identifier.citedreferenceMichaletz ST, Weiser MD, McDowell NG, Zhou J, Kaspari M, Helliker BR, Enquist BJ. 2016. The energetic and carbon economic origins of leaf thermoregulation. Nature Plants 2: 16129.
dc.identifier.citedreferenceNiu G-Y, Yang Z-L, Mitchell KE, Chen F, Ek MB, Barlage M, Kumar A, Manning K, Niyogi D, Rosero E et al. 2011. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. Journal of Geophysical Research: Atmospheres 116: D12109.
dc.identifier.citedreferenceOnoda Y, Hikosaka K, Hirose T. 2004. Allocation of nitrogen to cell walls decreases photosynthetic nitrogen-use efficiency. Functional Ecology 18: 419 – 425.
dc.identifier.citedreferencePosch BC, Zhai D, Coast O, Scafaro AP, Bramley H, Reich PB, Ruan Y-L, Trethaowan R, Way DA, Atkin OK. 2021. Wheat respiratory O 2 consumption falls with night warming alongside greater respiratory CO 2 loss and reduced biomass. Journal of Experimental Botany 73: 915 – 926.
dc.identifier.citedreferencePrentice IC, Dong N, Gleason SM, Maire V, Wright IJ. 2014. Balancing the costs of carbon gain and water transport: testing a new theoretical framework for plant functional ecology. Ecology Letters 17: 82 – 91.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.