Show simple item record

Bayesian safety surveillance with adaptive bias correction

dc.contributor.authorBu, Fan
dc.contributor.authorSchuemie, Martijn J.
dc.contributor.authorNishimura, Akihiko
dc.contributor.authorSmith, Louisa H.
dc.contributor.authorKostka, Kristin
dc.contributor.authorFalconer, Thomas
dc.contributor.authorMcleggon, Jody-Ann
dc.contributor.authorRyan, Patrick B.
dc.contributor.authorHripcsak, George
dc.contributor.authorSuchard, Marc A.
dc.date.accessioned2024-01-04T21:57:14Z
dc.date.available2025-02-04 16:57:12en
dc.date.available2024-01-04T21:57:14Z
dc.date.issued2024-01-30
dc.identifier.citationBu, Fan; Schuemie, Martijn J.; Nishimura, Akihiko; Smith, Louisa H.; Kostka, Kristin; Falconer, Thomas; Mcleggon, Jody-Ann ; Ryan, Patrick B.; Hripcsak, George; Suchard, Marc A. (2024). "Bayesian safety surveillance with adaptive bias correction." Statistics in Medicine 43(2): 395-418.
dc.identifier.issn0277-6715
dc.identifier.issn1097-0258
dc.identifier.urihttps://hdl.handle.net/2027.42/191805
dc.publisherJohn Wiley & Sons, Inc.
dc.subject.otherpostmarket safety surveillance
dc.subject.otherBayesian sequential testing
dc.subject.othersystematic error
dc.subject.otherreal-world evidence
dc.titleBayesian safety surveillance with adaptive bias correction
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbsecondlevelStatistics and Numeric Data
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191805/1/sim9968-sup-0001-supinfo.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191805/2/sim9968.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191805/3/sim9968_am.pdf
dc.identifier.doi10.1002/sim.9968
dc.identifier.sourceStatistics in Medicine
dc.identifier.citedreferenceGeorge H, Duke Jon D, Shah Nigam H, et al. Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers. MEDINFO 2015: eHealth-enabled Health. Amsterdam, the Netherlands: IOS Press; 2015: 574 - 578.
dc.identifier.citedreferenceJerome C. A Bayesian test of some classical hypotheses—with applications to sequential clinical trials. J Am Stat Assoc. 1966; 61: 577 - 594.
dc.identifier.citedreferenceThall Peter F, Simon Richard M, Estey EH. Bayesian sequential monitoring designs for single-arm clinical trials with multiple outcomes. Stat Med. 1995; 14: 357 - 379.
dc.identifier.citedreferenceSmith Michael K, Ieuan J, Morris Mark F, Grieve Andrew P, Keith T. Implementation of a Bayesian adaptive design in a proof of concept study. Pharm Stat J Appl Stat Pharm Ind. 2006; 5: 39 - 50.
dc.identifier.citedreferenceXian Z, Suyu L, Kim Edward S, Herbst Roy S, Jack LJ. Bayesian adaptive design for targeted therapy development in lung cancer—a step toward personalized medicine. Clin Trials. 2008; 5: 181 - 193.
dc.identifier.citedreferenceBerry Scott M, Carlin Bradley P, Jack LJ, Peter M. Bayesian adaptive methods for clinical trials. Boca Raton, FL: CRC press; 2010.
dc.identifier.citedreferenceRongxia L, Brock S, Charles R. A Bayesian approach to sequential analysis in post-licensure vaccine safety surveillance. Pharm Stat. 2020; 19: 291 - 302.
dc.identifier.citedreferenceBelongia Edward A, Irving Stephanie A, Shui Irene M, et al. Real-time surveillance to assess risk of intussusception and other adverse events after pentavalent, bovine-derived rotavirus vaccine. Pediatr Infect Dis J. 2010; 29: 1 - 5.
dc.identifier.citedreferenceXintong L, Anna O, Rupa M, et al. Characterising the background incidence rates of adverse events of special interest for covid-19 vaccines in eight countries: multinational network cohort study. BMJ. 2021; 373.
dc.identifier.citedreferenceKlein Nicola P, Ned L, Kristin G, et al. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA. 2021; 326: 1390 - 1399.
dc.identifier.citedreferenceWhitaker HJ, Farrington CP, Spiessens B, Musonda P. Tutorial in biostatistics: the self-controlled case series method. Stat Med. 2006; 25: 1768 - 1797.
dc.identifier.citedreferencePaddy F, Rush M, Miller E, et al. A new method for active surveillance of adverse events from diphtheria/tetanus/pertussis and measles/mumps/rubella vaccines. Lancet. 1995; 345: 567 - 569.
dc.identifier.citedreferenceFarrington CP. Control without separate controls: evaluation of vaccine safety using case-only methods. Vaccine. 2004; 22: 2064 - 2070.
dc.identifier.citedreferenceTchetgen E. The control outcome calibration approach for causal inference with unobserved confounding. Am J Epidemiol. 2014; 179: 633 - 640.
dc.identifier.citedreferenceSchuemie MJ, Ryan PB, DuMouchel W, Suchard MA, Madigan D. Interpreting observational studies: why empirical calibration is needed to correct p-values. Stat Med. 2014; 33: 209 - 218.
dc.identifier.citedreferenceSchuemie MJ, Hripcsak G, Ryan PB, Madigan D, Suchard MA. Robust empirical calibration of p-values using observational data. Stat Med. 2016; 35: 3883 - 3888.
dc.identifier.citedreferenceOverhage J, Marc RPB, Reich Christian G, Hartzema Abraham G, Stang Paul E. Validation of a common data model for active safety surveillance research. J Am Med Inform Assoc. 2012; 19: 54 - 60.
dc.identifier.citedreferenceSchuemie Martijn J, Ryan Patrick B, George H, David M, Suchard MA. Improving reproducibility by using high-throughput observational studies with empirical calibration. Philos Transact A Math Phys Eng Sci. 2018; 376: 20170356.
dc.identifier.citedreferenceRavi G, Bradley L, Jonathan D, et al. Risk of Guillain-Barré Syndrome Following Recombinant Zoster Vaccine in Medicare Beneficiaries. JAMA Intern Med. 2021; 181: 1623 - 1630.
dc.identifier.citedreferenceAnna O, George H. COVID-19 vaccination effectiveness rates by week and sources of bias: a retrospective cohort study. BMJ Open. 2022; 12: e061126.
dc.identifier.citedreferenceSuchard Marc A, Schuemie Martijn J, Krumholz Harlan M, et al. Comprehensive comparative effectiveness and safety of first-line antihypertensive drug classes: a systematic, multinational, large-scale analysis. Lancet. 2019; 394: 1816 - 1826.
dc.identifier.citedreferenceGeorge H, Ryan Patrick B, Duke Jon D, et al. Characterizing treatment pathways at scale using the OHDSI network. Proceedings of the National Academy of Sciences. Washington, D.C: National Academy of Sciences, Vol 113; 2016: 7329 - 7336.
dc.identifier.citedreferenceClair B, Defalco Frank J, Ryan Patrick B, Rijnbeek Peter R. Increasing trust in real-world evidence through evaluation of observational data quality. J Am Med Inform Assoc. 2021; 28: 2251 - 2257.
dc.identifier.citedreferenceSteven B, Juhani E, Claire-Anne S, et al. Importance of background rates of disease in assessment of vaccine safety during mass immunisation with pandemic H1N1 influenza vaccines. Lancet. 2009; 374: 2115 - 2122.
dc.identifier.citedreferenceKatherine YW, Nordin James D, Martin K, et al. An assessment of the safety of adolescent and adult tetanus–diphtheria–acellular pertussis (Tdap) vaccine, using active surveillance for adverse events in the Vaccine Safety Datalink. Vaccine. 2009; 27: 4257 - 4262.
dc.identifier.citedreferenceKatherine YW, Martin K, Fireman Bruce H, et al. Active surveillance for adverse events: the experience of the Vaccine Safety Datalink project. Pediatrics. 2011; 127: S54 - S64.
dc.identifier.citedreferenceButtery JP, Danchin MH, Lee KJ, et al. Intussusception following rotavirus vaccine administration: post-marketing surveillance in the National Immunization Program in Australia. Vaccine. 2011; 29: 3061 - 3066.
dc.identifier.citedreferenceLeonoor W, Coralie L, Corinne V, et al. The incidence of narcolepsy in Europe: before, during, and after the influenza A (H1N1) pdm09 pandemic and vaccination campaigns. Vaccine. 2013; 31: 1246 - 1254.
dc.identifier.citedreferenceBarker Charlotte IS, Snape MD. Pandemic influenza A H1N1 vaccines and narcolepsy: vaccine safety surveillance in action. Lancet Infect Dis. 2014; 14: 227 - 238.
dc.identifier.citedreferenceSalmon Daniel A, Michael P, Richard F, et al. Association between Guillain-Barré syndrome and influenza A (H1N1) 2009 monovalent inactivated vaccines in the USA: a meta-analysis. Lancet. 2013; 381: 1461 - 1468.
dc.identifier.citedreferenceClémence G, Pauline B, Jérémie R, et al. Seasonal influenza vaccine and Guillain-Barré syndrome: a self-controlled case series study. Neurology. 2020; 94: e2168 - e2179.
dc.identifier.citedreferenceFaaizah A, Schuemie Martijn J, Fan B, et al. Serially Combining Epidemiological Designs Does Not Improve Overall Signal Detection in Vaccine Safety Surveillance. Drug Saf. 2023; 797–807: 1 - 11.
dc.identifier.citedreferenceAnderson Roy M, May RM. Directly transmitted infections diseases: control by vaccination. Science. 1982; 215: 1053 - 1060.
dc.identifier.citedreferenceFrancis Donald P, Hadler Stephen C, Thompson Sumner E, et al. The prevention of hepatitis B with vaccine: report of the Centers for Disease Control multi-center efficacy trial among homosexual men. Ann Intern Med. 1982; 97: 362 - 366.
dc.identifier.citedreferenceCenters for Disease Control and Prevention. National Immunization Program (Centers for Disease Control and Prevention), Education and Information and Partnership Branch National Immunization Program (Centers for Disease Control and Prevention). Epidemiology and Prevention of Vaccine-Preventable Diseases. Atlanta, GA: Department of Health & Human Services, Public Health Service, Centers for Disease Control and Prevention; 2005.
dc.identifier.citedreferenceNowak Glen J, Kristine S, Kelli B, Smith Teresa M, Michelle B. Promoting influenza vaccination: insights from a qualitative meta-analysis of 14 years of influenza-related communications research by US Centers for Disease Control and Prevention (CDC). Vaccine. 2015; 33: 2741 - 2756.
dc.identifier.citedreferenceThomas V, Frank DS, Chen Robert T, Elizabeth M. Vaccine safety surveillance using large linked databases: opportunities, hazards and proposed guidelines. Expert Rev Vaccines. 2003; 2: 21 - 29.
dc.identifier.citedreferenceLieu Tracy A, Martin K, Davis Robert L, et al. Real-time vaccine safety surveillance for the early detection of adverse events. Med Care. 2007; 45: S89 - S95.
dc.identifier.citedreferenceBaker Meghan A, Michael N, Cole David V, Lee Grace M, Lieu TA. Post-licensure rapid immunization safety monitoring program (PRISM) data characterization. Vaccine. 2013; 31: K98 - K112.
dc.identifier.citedreferenceAndreia L, Andrews Nick J, Thomas SL. Near real-time vaccine safety surveillance using electronic health records—a systematic review of the application of statistical methods. Pharmacoepidemiol Drug Saf. 2016; 25: 225 - 237.
dc.identifier.citedreferenceMoro Pedro L, Rongxia L, Penina H, Eric W, Maria C. Surveillance systems and methods for monitoring the post-marketing safety of influenza vaccines at the Centers for Disease Control and Prevention. Expert Opin Drug Saf. 2016; 15: 1175 - 1183.
dc.identifier.citedreferenceLee Grace M, Romero José R, Bell BP. Postapproval vaccine safety surveillance for COVID-19 vaccines in the US. JAMA. 2020; 324: 1937 - 1938.
dc.identifier.citedreferenceEMA European Medicine Agency. Pharmacovigilance Plan of the EU Regulatory Network for COVID-19 Vaccines (EMA/333964/2020). 2020. https://www.ema.europa.eu/en/documents/other/pharmacovigilance-plan-eu-regulatory-network-covid-19-vaccines_en.pdf
dc.identifier.citedreferenceCenters for Disease Control and Prevention VAERS. Vaccine Adverse Event Reporting System (VAERS). 2021. https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vaers/index.html
dc.identifier.citedreferenceCenters for Disease Control and Prevention VSD. Vaccine Safety Datalink (VSD). 2021. https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/vsd/index.html
dc.identifier.citedreferenceCenters for Disease Control and Prevention CISA. Clinical Immunization Safety Assessment (CISA) Project. 2021. https://www.cdc.gov/vaccinesafety/ensuringsafety/monitoring/cisa/index.%html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fvaccinesafety%2Factivities2FCISA.html
dc.identifier.citedreferenceWorld Health Organization (WHO). Establishing Surveillance Systems in Countries Using COVID-19 Vaccines. 2021. https://cdn.who.int/media/docs/default-source/covid-19-vaccines-safety-surveillance-manual/training-slides_covid-19_vs_surveillance_systemsafa53e9c-0bde-4765-90fa-2dedf3b6da72.pdf?sfvrsn=6ccff509_5&Status=Master
dc.identifier.citedreferenceRodrigues LC, Smith PG. Use of the case-control approach in vaccine evaluation: efficacy and adverse effects. Epidemiol Rev. 1999; 21: 56 - 72.
dc.identifier.citedreferenceGlanz Jason M, McClure David L, Stanley X, et al. Four different study designs to evaluate vaccine safety were equally validated with contrasting limitations. J Clin Epidemiol. 2006; 59: 808 - 818.
dc.identifier.citedreferenceNewcomer Sophia R, Martin K, Stan X, et al. Bias from outcome misclassification in immunization schedule safety research. Pharmacoepidemiol Drug Saf. 2018; 27: 221 - 228.
dc.identifier.citedreferenceMartin K, Davis RL, Margarette K, Edwin L, Tracy L, Richard P. A Maximized Sequential Probability Ratio Test for Drug and Vaccine Safety Surveillance. Seq Anal. 2011; 30: 58 - 78.
dc.identifier.citedreferenceSchuemie Martijn J, Faaizah A, Nicole P, et al. Vaccine Safety Surveillance Using Routinely Collected Healthcare Data—An Empirical Evaluation of Epidemiological Designs. Front Pharmacol. 2022; 13: 2532.
dc.identifier.citedreferenceSchuemie Martijn J, Fan B, Akihiko N, Suchard Marc A. Adjusting for both sequential testing and systematic error in safety surveillance using observational data: Empirical calibration and MaxSPRT. Stat Med. 2023; 42: 619 - 631.
dc.identifier.citedreferenceBarnard GA. Sequential tests in industrial statistics. Suppl J R Stat Soc. 1946; 8: 1 - 21.
dc.identifier.citedreferenceWetherill GB. Bayesian sequential analysis. Biometrika. 1961; 48: 281 - 292.
dc.identifier.citedreferenceBerger James O, Brown Lawrence D, Wolpert RL. A unified conditional frequentist and Bayesian test for fixed and sequential simple hypothesis testing. Ann Stat. 1994; 22: 1787 - 1807.
dc.identifier.citedreferenceBerger James O, Wolpert RL. The likelihood principle. Institute of Mathematical Statistics Lecture Notes–Monograph. Beachwood, OH: IMS; 1988.
dc.identifier.citedreferenceBerger James O, Ben B, Yinping W. Unified frequentist and Bayesian testing of a precise hypothesis. Stat Sci. 1997; 12: 133 - 160.
dc.identifier.citedreferenceBerger James O, Benzion B, Yinping W. Simultaneous Bayesian-frequentist sequential testing of nested hypotheses. Biometrika. 1999; 86: 79 - 92.
dc.identifier.citedreferenceJha Sumit K, Clarke Edmund M, Langmead Christopher J, Axel L, André P, Paolo Z. A bayesian approach to model checking biological systems. International Conference on Computational Methods in Systems Biology. Hanover, PA: Springer; 2009: 218 - 234.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.