Show simple item record

Rural disparities impact response to a web-based physical activity self-management intervention in COPD: A secondary analysis

dc.contributor.authorRobinson, Stephanie A.
dc.contributor.authorBamonti, Patricia
dc.contributor.authorRichardson, Caroline R.
dc.contributor.authorKadri, Reema
dc.contributor.authorMoy, Marilyn L.
dc.date.accessioned2024-01-04T21:57:24Z
dc.date.available2025-02-04 16:57:22en
dc.date.available2024-01-04T21:57:24Z
dc.date.issued2024-01
dc.identifier.citationRobinson, Stephanie A.; Bamonti, Patricia; Richardson, Caroline R.; Kadri, Reema; Moy, Marilyn L. (2024). "Rural disparities impact response to a web-based physical activity self-management intervention in COPD: A secondary analysis." The Journal of Rural Health 40(1): 140-150.
dc.identifier.issn0890-765X
dc.identifier.issn1748-0361
dc.identifier.urihttps://hdl.handle.net/2027.42/191810
dc.description.abstractPurposeThis secondary exploratory analysis examined rural-urban differences in response to a web-based physical activity self-management intervention for chronic obstructive pulmonary disease (COPD).MethodsParticipants with COPD (N = 239 US Veterans) were randomized to either a multicomponent web-based intervention (goal setting, iterative feedback of daily step counts, motivational and educational information, and an online community forum) or waitlist-control for 4 months with a 12-month follow-up. General linear modeling estimated the impact of rural/urban status (using Rural-Urban Commuting Area [RUCA] codes) on (1) 4- and 12-month daily step-count change compared to waitlist-control, and (2) intervention engagement (weekly logons and participant feedback).FindingsRural (n = 108) and urban (n = 131) participants’ mean age was 66.7±8.8 years. Rural/urban status significantly moderated 4-month change in daily step counts between randomization groups (p = 0.041). Specifically, among urban participants, intervention participants improved by 1500 daily steps more than waitlist-control participants (p = 0.001). There was no difference among rural participants. In the intervention group, rural participants engaged less with the step-count graphs on the website than urban participants at 4 months (p = 0.019); this difference dissipated at 12 months. More frequent logons were associated with greater change in daily step counts (p = 0.004); this association was not moderated by rural/urban status.ConclusionsThe web-based intervention was effective for urban, but not rural, participants at 4 months. Rural participants were also less engaged at 4 months, which may explain differences in effectiveness. Technology-based interventions can help address urban-rural disparities in patients with COPD, but may also contribute to them unless resources are available to support engagement with the technology.
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherhealth disparities
dc.subject.otherengagement
dc.subject.otherphysical activity
dc.subject.otherdigital divide
dc.subject.otherCOPD
dc.titleRural disparities impact response to a web-based physical activity self-management intervention in COPD: A secondary analysis
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191810/1/jrh12765.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/191810/2/jrh12765_am.pdf
dc.identifier.doi10.1111/jrh.12765
dc.identifier.sourceThe Journal of Rural Health
dc.identifier.citedreferenceMcLaughlin M, Delaney T, Hall A, et al. Associations between digital health intervention engagement, physical activity, and sedentary behavior: systematic review and meta-analysis. J Med Internet Res. 2021; 23 ( 2 ): e23180. doi: 10.2196/23180
dc.identifier.citedreferencePelletier CA, White N, Duchesne A, Sluggett L. Barriers to physical activity for adults in rural and urban Canada: a cross-sectional comparison. SSM—Popul Health. 2021; 16: 100964. doi: 10.1016/j.ssmph.2021.100964
dc.identifier.citedreferenceMoy ML, Wayne PM, Litrownik D, et al. Long-term Exercise After Pulmonary Rehabilitation (LEAP): design and rationale of a randomized controlled trial of Tai Chi. Contemp Clin Trials. 2015; 45 ( Pt B ): 458 - 467. doi: 10.1016/j.cct.2015.09.004
dc.identifier.citedreferenceMoy ML, Martinez CH, Kadri R, et al. Long-term effects of an internet-mediated pedometer-based walking program for chronic obstructive pulmonary disease: randomized controlled trial. J Med Internet Res. 2016; 18 ( 8 ): e215. doi: 10.2196/jmir.5622
dc.identifier.citedreferenceHart LG, Larson EH, Lishner DM. Rural Definitions for health policy and research. Am J Public Health. 2005; 95 ( 7 ): 1149 - 1155. doi: 10.2105/ajph.2004.042432
dc.identifier.citedreferenceHealthcare Cost and Utilization Project (HCUP). August 2008. Agency for Healthcare Research and Quality, Rockville, MD. https://hcup-us.ahrq.gov/db/vars/siddistnote.jsp?var=pl_ruca2005. Date accessed: 03/06/2023
dc.identifier.citedreferenceMatthews CE, Hagströmer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc. 2012; 44: S68. Suppl 1.
dc.identifier.citedreferencePickett AC, Bowie M, Berg A, Towne Jr SD, Hollifield S, Smith ML. Rural–urban differences in physical activity tracking and engagement in a web-based platform. Public Health Rep. 2023;138(1):76-84.
dc.identifier.citedreferenceKlann A, Vu L, Ewing M, Fenton M, Pojednic R. Translating urban walkability initiatives for older adults in rural and under-resourced communities. Int J Environ Res Public Health. 2019; 16 ( 17 ): 3041.
dc.identifier.citedreferenceWen M, Fan JX, Kowaleski-Jones L, Wan N. Rural–urban disparities in obesity prevalence among working age adults in the United States: exploring the mechanisms. Am J Health Promot. 2018; 32 ( 2 ): 400 - 408.
dc.identifier.citedreferenceSpencer LM, McKeough ZJ. Maintaining the benefits following pulmonary rehabilitation: achievable or not? Respirol. 2019; 24 ( 9 ): 909 - 915. doi: 10.1111/resp.13518
dc.identifier.citedreferencePaixão C, Rocha V, Brooks D, Marques A. Unsupervised physical activity interventions for people with COPD: a systematic review and meta-analysis. Pulmonology. 2022: S2531-0437(22)00016-00012 [published online ahead of print, 2022 Feb 9]. doi: 10.1016/j.pulmoe.2022.01.007
dc.identifier.citedreferenceAlkhaldi G, Hamilton FL, Lau R, Webster R, Michie S, Murray E. The effectiveness of prompts to promote engagement with digital interventions: a systematic review. J Med Internet Res. 2016; 18 ( 1 ): e6. doi: 10.2196/jmir.4790
dc.identifier.citedreferenceRobinson SA, Bisson AN, Hughes ML, Ebert J, Lachman ME. Time for change: using implementation intentions to promote physical activity in a randomised pilot trial. Psychol Health. 2019; 34 ( 2 ): 232 - 254. doi: 10.1080/08870446.2018.1539487
dc.identifier.citedreferenceSilva MAVD, São-João TM, Brizon VC, Franco DH, Mialhe FL. Impact of implementation intentions on physical activity practice in adults: a systematic review and meta-analysis of randomized clinical trials. PLoS One. 2018; 13 ( 11 ): e0206294. doi: 10.1371/journal.pone.0206294
dc.identifier.citedreferenceCole-Lewis H, Ezeanochie N, Turgiss J. Understanding health behavior technology engagement: pathway to measuring digital behavior change interventions. JMIR Form Res. 2019; 3 ( 4 ): e14052. doi: 10.2196/14052
dc.identifier.citedreferenceBoekaerts M, Pintrich PR, Zeidner M. Handbook of Self-Regulation. Academic Press; 2000.
dc.identifier.citedreferenceCameron LD, Leventhal H. The Self-Regulation of Health and Illness Behaviour. Psychology Press; 2003.
dc.identifier.citedreferenceRatzan S, Parker R, Selden C, Zorn M. National library of medicine current bibliographies in medicine: health literacy. National Institutes of Health, US Department of Health and Human Services; 2000.
dc.identifier.citedreferenceGolbeck AL, Ahlers-Schmidt CR, Paschal AM. Dismuke SE. A definition and operational framework for health numeracy. Am J Prev Med. 2005; 29 ( 4 ): 375 - 376.
dc.identifier.citedreferenceShnaigat M, Downie S, Hosseinzadeh H. Effectiveness of health literacy interventions on COPD self-management outcomes in outpatient settings: a systematic review. COPD: J Chron Obstruct Pulmonar Dis. 2021; 18 ( 3 ): 367 - 373.
dc.identifier.citedreferenceAljassim N, Ostini R. Health literacy in rural and urban populations: a systematic review. Patient Educ Couns. 2020; 103 ( 10 ): 2142 - 2154. doi: 10.1016/j.pec.2020.06.007
dc.identifier.citedreferenceCooper R, Giangreco A, Duffy M, et al. Evaluation of myCOPD digital self-management technology in a remote and rural population: real-world feasibility study. Original paper. JMIR mHealth. 2022; 10 ( 2 ): e30782. doi: 10.2196/30782
dc.identifier.citedreferenceMartinez CH, St Jean BL, Plauschinat CA, et al. Internet access and use by COPD patients in the National Emphysema/COPD Association Survey. BMC Pulm Med. 2014; 14 ( 1 ): 66. doi: 10.1186/1471-2466-14-66
dc.identifier.citedreferenceRudick C, Anthonisen NR, Manfreda J. Recruiting healthy participants for a large clinical trial. Control Clin Trials. 1993; 14 ( 2 ): 68 - 79. doi: 10.1016/0197-2456(93)90025-9
dc.identifier.citedreferenceGlobal Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (2020 Report). 2020.
dc.identifier.citedreferenceAdeloye D, Chua S, Lee C, et al. Global and regional estimates of COPD prevalence: systematic review and meta–analysis. J Glob Health. 2015; 5 ( 2 ): 020415.
dc.identifier.citedreferenceHeron M. Deaths: Leading causes for 2018. Natl Vital Stat Rep. 2021;70(4):1-115.
dc.identifier.citedreferenceCroft J, Wheaton A, Liu Y, et al. Urban-Rural county and state differences in chronic obstructive pulmonary disease—United States, 2015. MMWR Morb Mortal Wkly Rep. 2018; 67: 205 - 211.
dc.identifier.citedreferenceRaju S, Brigham EP, Paulin LM, et al. The burden of rural chronic obstructive pulmonary disease: analyses from the national health and nutrition examination survey. Am J Respir Crit Care Med. 2020; 201 ( 4 ): 488 - 491.
dc.identifier.citedreferenceGaffney AW, Hawks L, White AC, et al. Health care disparities across the urban-rural divide: a national study of individuals with COPD. J Rural Health. 2022; 38 ( 1 ): 207 - 216.
dc.identifier.citedreferenceJackson BE, Coultas DB, Suzuki S, Singh KP, Bae S. Rural-urban disparities in quality of life among patients with COPD. J Rural Health. 2013; 29: s62 - s69. Suppl 1 doi: 10.1111/jrh.12005
dc.identifier.citedreferenceBurkes RM, Gassett AJ, Ceppe AS, et al. Rural residence and chronic obstructive pulmonary disease exacerbations. Analysis of the SPIROMICS cohort. Ann Am Thorac Soc. 2018; 15 ( 7 ): 808 - 816.
dc.identifier.citedreferenceCroft JB, Lu H, Zhang X, Holt JB. Geographic accessibility of pulmonologists for adults with COPD: United States, 2013. Chest. 2016; 150 ( 3 ): 544 - 553.
dc.identifier.citedreferenceMoscovice IS, Casey MM, Wu Z. Disparities in geographic access to hospital outpatient pulmonary rehabilitation programs in the United States. Chest. 2019; 156 ( 2 ): 308 - 315. doi: 10.1016/j.chest.2019.03.031
dc.identifier.citedreferenceTroosters T, Sciurba F, Battaglia S, et al. Physical inactivity in patients with COPD, a controlled multi-center pilot-study. Respir Med. 2010; 104 ( 7 ): 1005 - 1011.
dc.identifier.citedreferenceWaschki B, Kirsten AM, Holz O, et al. Disease progression and changes in physical activity in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2015; 192 ( 3 ): 295 - 306. doi: 10.1164/rccm.201501-0081OC
dc.identifier.citedreferenceWatz H, Waschki B, Meyer T, Magnussen H. Physical activity in patients with COPD. Eur Respir J. 2009; 33 ( 2 ): 262 - 272. doi: 10.1183/09031936.00024608
dc.identifier.citedreferenceMoy ML, Teylan M, Weston NA, Gagnon DR, Garshick E. Daily step count predicts acute exacerbations in a US cohort with COPD. PLoS One. 2013; 8 ( 4 ): e60400. doi: 10.1371/journal.pone.0060400
dc.identifier.citedreferenceWaschki B, Kirsten A, Holz O, et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: a prospective cohort study. Chest. 2011; 140 ( 2 ): 331 - 342.
dc.identifier.citedreferenceCarlson SA, Whitfield GP, Peterson EL, et al. Geographic and urban-rural differences in walking for leisure and transportation. Am J Prev Med. 2018; 55 ( 6 ): 887 - 895. doi: 10.1016/j.amepre.2018.07.008
dc.identifier.citedreferenceYan R, Wang Y, Bo J, Li W. Healthy lifestyle behaviors among individuals with chronic obstructive pulmonary disease in urban and rural communities in China: a large community-based epidemiological study. Int J Chron Obstruct Pulmon Dis. 2017; 12: 3311.
dc.identifier.citedreferenceMartinez CH, Moy ML, Nguyen HQ, et al. Taking healthy steps: rationale, design and baseline characteristics of a randomized trial of a pedometer-based internet-mediated walking program in veterans with chronic obstructive pulmonary disease. BMC Pulm Med. 2014; 14: 12. doi: 10.1186/1471-2466-14-12
dc.identifier.citedreferenceMoy ML, Collins RJ, Martinez CH, et al. An internet-mediated pedometer-based program improves health-related quality-of-life domains and daily step counts in COPD: a randomized controlled trial. Chest. 2015; 148 ( 1 ): 128 - 137. doi: 10.1378/chest.14-1466
dc.identifier.citedreferenceWan ES, Kantorowski A, Homsy D, et al. Promoting physical activity in COPD: insights from a randomized trial of a web-based intervention and pedometer use. Respir Med. 2017; 130: 102 - 110. doi: 10.1016/j.rmed.2017.07.057
dc.identifier.citedreferenceWan ES, Kantorowski A, Polak M, et al. Long-term effects of web-based pedometer-mediated intervention on COPD exacerbations. Respir Med. 2020; 162: 105878. doi: 10.1016/j.rmed.2020.105878
dc.identifier.citedreferenceRobinson SA, Cooper JA, Goldstein RL, et al. A randomised trial of a web-based physical activity self-management intervention in COPD. ERJ Open Res. 2021; 7: 00158 - 02021. doi: 10.1183/23120541.00158-2021
dc.identifier.citedreferenceTroosters T, Maltais F, Leidy N, et al. Effect of bronchodilation, exercise training, and behavior modification on symptoms and physical activity in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2018; 198 ( 8 ): 1021 - 1032. doi: 10.1164/rccm.201706-1288OC
dc.identifier.citedreferenceVorrink SN, Kort HS, Troosters T, Zanen P, Lammers JJ. Efficacy of an mHealth intervention to stimulate physical activity in COPD patients after pulmonary rehabilitation. Eur Respir J. 2016; 48 ( 4 ): 1019 - 1029. doi: 10.1183/13993003.00083-2016
dc.identifier.citedreferenceDrake C, Zhang Y, Chaiyachati KH, Polsky D. The limitations of poor broadband internet access for telemedicine use in rural America: an observational study. Ann Intern Med. 2019; 171 ( 5 ): 382 - 384.
dc.identifier.citedreferenceMcAuley A. Digital health interventions: widening access or widening inequalities? Public Health. 2014; 128 ( 128 ): 1118 - 1120.
dc.identifier.citedreferenceRobinson S, Troosters T, Moy M. Technology to enhance engagement in physical activity. In: Moy M, Blackstock F, Nici L, eds. The Art and Science of Enhancing Patient Engagement in Pulmonary Healthcare. Springer; 2020.
dc.identifier.citedreferenceTirado-Morueta R, Aguaded-Gómez JI, Hernando-Gómez Á. The socio-demographic divide in Internet usage moderated by digital literacy support. Technol Soc. 2018; 55: 47 - 55.
dc.identifier.citedreferenceRamsetty A, Adams C. Impact of the digital divide in the age of COVID-19. J Am Med Inform Assoc. 2020; 27 ( 7 ): 1147 - 1148. doi: 10.1093/jamia/ocaa078
dc.identifier.citedreferenceMatthews K, Nazroo J, Marshall A. Digital inclusion in later life: cohort changes in internet use over a ten-year period in England. Age Soc. 2019; 39 ( 9 ): 1914 - 1932.
dc.identifier.citedreferenceOnyeaka HK, Romero P, Healy BC, Celano CM. Age differences in the use of health information technology among adults in the United States: an analysis of the Health Information National Trends Survey. J Aging Health. 2021; 33 ( 1-2 ): 147 - 154.
dc.identifier.citedreferenceChalfont G, Mateus C, Varey S, Milligan C. Self-Efficacy of older people using technology to Self-Manage COPD, hypertension, heart failure, or dementia at home: an overview of systematic reviews. Gerontologist. 2021; 61 ( 6 ): e318 - e334.
dc.identifier.citedreferencePelletier CA, Pousette A, Ward K, et al. Implementation of physical activity interventions in rural, remote, and northern communities: a scoping review. Inquiry. 2020; 57: 004695802093566. doi: 10.1177/0046958020935662
dc.identifier.citedreferenceTurner J, Maiwald K, Winter A, Simms A, Bendall C, Camp PG. Photovoice exploration of physical activity norms and values among rural and remote pulmonary rehabilitation participants in British Columbia, Canada. Disabil Rehabil. 2022; 44 ( 26 ): 8400 - 8411. doi: 10.1080/09638288.2021.2018052
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.