Autonomic and cytokine mechanisms of acute electroacupuncture in a rodent model of functional dyspepsia
dc.contributor.author | Zhang, Sujuan | |
dc.contributor.author | Liu, Yi | |
dc.contributor.author | Li, Shiying | |
dc.contributor.author | Ye, Feng | |
dc.contributor.author | Yin, Jieyun | |
dc.date.accessioned | 2024-01-04T21:57:59Z | |
dc.date.available | 2025-02-04 16:57:58 | en |
dc.date.available | 2024-01-04T21:57:59Z | |
dc.date.issued | 2024-01 | |
dc.identifier.citation | Zhang, Sujuan; Liu, Yi; Li, Shiying; Ye, Feng; Yin, Jieyun (2024). "Autonomic and cytokine mechanisms of acute electroacupuncture in a rodent model of functional dyspepsia." Neurogastroenterology & Motility (1): n/a-n/a. | |
dc.identifier.issn | 1350-1925 | |
dc.identifier.issn | 1365-2982 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/191826 | |
dc.description.abstract | BackgroundCytokines have been presumed to play an important role in the pathophysiology of functional dyspepsia (FD). Electroacupuncture (EA) has been used for FD treatment; however, its mechanisms remain largely unknown. This study aimed to (1) compare the plasma levels of cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, and IL-10, in “FD” rats with normal control rats; (2) investigate whether EA, using chronically implanted electrodes, could inhibit the release of these cytokines; and (3) explore the correlation of cytokine levels with plasma norepinephrine (NE) levels and gastric emptying (GE).MethodsA rodent model of FD was established via neonatal treatment with intragastric iodoacetamide. After 8 weeks, the rats were implanted with electrodes at acupoint ST36 for EA. The plasma levels of cytokines and NE were measured using enzyme-linked immunosorbent assay. We explored the correlations of cytokine levels with NE levels and GE.Key Results(i) “FD” rats demonstrated increased levels of TNF-α, IL-1β, and IL-6 (p < 0.05 each) compared with the control rats. (ii) EA significantly decreased the plasma levels of TNF-α, IL-1β, and IL-6 in “FD” rats (p < 0.05 each) compared with sham EA. (iii) The plasma levels of NE were positively correlated with those of IL-6 (r = 0.86, p < 0.05) and IL-1β (r = 0.81, p < 0.05), whereas NE levels and GE were negatively correlated with IL-10 levels (r = −0.870, p < 0.05 and r = −0.791, p < 0.05, respectively).ConclusionsEA inhibits the release of proinflammatory cytokines probably via the suppression of sympathetic activity in “FD” rats.EA at ST36 inhibited the release of plasma pro-inflammatory cytokine levels (TNF-α, IL-1β, and IL-6) in FD, thus demonstrating that the cholinergic anti-inflammatory pathway is mediated via autonomic mechanisms in FD. | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.subject.other | norepinephrine | |
dc.subject.other | functional dyspepsia | |
dc.subject.other | electroacupuncture | |
dc.subject.other | gastric emptying | |
dc.subject.other | duodenal inflammation | |
dc.subject.other | cytokine | |
dc.title | Autonomic and cytokine mechanisms of acute electroacupuncture in a rodent model of functional dyspepsia | |
dc.type | Article | |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Internal Medicine and Specialties | |
dc.subject.hlbtoplevel | Health Sciences | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191826/1/nmo14702.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/191826/2/nmo14702_am.pdf | |
dc.identifier.doi | 10.1111/nmo.14702 | |
dc.identifier.source | Neurogastroenterology & Motility | |
dc.identifier.citedreference | Tracey KJ. Physiology and immunology of the cholinergic anti- inflammatory pathway. J Clin Invest. 2007; 117 ( 2 ): 289 - 296. | |
dc.identifier.citedreference | Jin H, Guo J, Liu J, et al. Anti-inflammatory effects and mechanisms of vagal nerve stimulation combined with electroacupuncture in a rodent model of TNBS-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2017; 313 ( 3 ): G192 - G202. | |
dc.identifier.citedreference | Liu LS, Winston JH, Shenoy MM, Song GQ, Chen JD, Pasricha PJ. A rat model of chronic gastric sensori motor dysfunction resulting from transient neonatal gastric irritation. Gastroenterology. 2008; 134: 2070 - 2079. | |
dc.identifier.citedreference | Liu J, Jin H, Foreman RD, et al. Chronic electrical stimulation at acupoints reduces body weight and improves blood glucose in obese rats via autonomic pathway. Obes Surg. 2015; 25 ( 7 ): 1209 - 1216. | |
dc.identifier.citedreference | Zhang N, Song G, Chen J, et al. Ameliorating effects and autonomic mechanisms of needle-less transcutaneous electrical stimulation at ST36 on stress-induced impairment in gastric slow waves. J Gastroenterol Hepatol. 2015; 30 ( 11 ): 1574 - 1581. | |
dc.identifier.citedreference | Miele E, Simeone D, Marino A, et al. Functional gastrointestinal disorders in children: an Italian prospective survey. Pediatrics. 2004; 114: 73 - 78. | |
dc.identifier.citedreference | Kindt S, Van Oudenhove L, Broekaert D, et al. Immune dysfunction in patients with functional gastrointestinal disorders. Neurogastroenterol Motil. 2009; 21 ( 4 ): 389 - 398. | |
dc.identifier.citedreference | Jung HK, Talley NJ. Role of the duodenum in the pathogenesis of functional dyspepsia: a paradigm shift. J Neurogastroenterol Motil. 2018; 24: 345 - 354. | |
dc.identifier.citedreference | Liu L, Li Q, Sapolsky R, et al. Transient gastric irritation in the neonatal rats leads tochanges in hypothalamic CRF expression, depression- and anxiety-like behavior as adults. PloS One. 2011; 6: e19498. | |
dc.identifier.citedreference | Rosas-Ballina M, Tracey KJ. Cholinergic control of inflammation. J Intern Med. 2009; 265 ( 6 ): 663 - 679. | |
dc.identifier.citedreference | Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity. 2017; 46 ( 6 ): 927 - 942. | |
dc.identifier.citedreference | Pavlov VA, Chavan SS, Tracey KJ. Molecular and functional neuroscience in immunity. Annu Rev Immunol. 2018; 36: 783 - 812. | |
dc.identifier.citedreference | Meregnani J, Clarencon D, Vivier M, Peinnequin A, Mouret C. Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci. 2011; 160: 82 - 89. | |
dc.identifier.citedreference | Ghia JE, Blennerhassett P, El Sharkawy RT, Collins SM. The protective effect of the vagus nerve in a murine model of chronic relapsing colitis. Am J Physiol Gastrointest Liver Physiol. 2007; 293: G711 - G718. | |
dc.identifier.citedreference | de Jonge WJ, van der Zanden EP, The FO, Bijlsma MF, van Westerloo DJ. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol. 2005; 6: 844 - 851. | |
dc.identifier.citedreference | Imai K, Ariga H, Chen C, Mantyh C, Pappas TN, Takahashi T. Effects of electroacupuncture on gastric motility and heart rate variability in conscious rats. Auton Neurosci. 2008; 138: 91 - 98. | |
dc.identifier.citedreference | Takahashi T. Effect and mechanism of acupuncture on gastrointestinal diseases. Int Rev Neurobiol. 2013; 111: 273 - 294. | |
dc.identifier.citedreference | Zhang B, Zhu K, Hu P, Xu F, Zhu L, Chen JDZ. Needleless transcutaneous neuromodulation accelerates postoperative recovery mediated via autonomic and Immuno-cytokine mechanisms in patients with cholecystolithiasis. Neuromodulation. 2019; 22 ( 5 ): 546 - 554. | |
dc.identifier.citedreference | Ouyang BS, Gao J, Che JL, et al. Effect of electro-acupuncture on tumornecrosis factor-α and vascular endothelial growth factor in peripheral blood and joint synovia of patients with rheumatoid arthritis. Chin J Integr Med. 2011; 17: 505 - 509. | |
dc.identifier.citedreference | Tian L, Huang YX, Tian M, Gao W, Chang Q. Downregulation of electroacupuncture at ST36 on TNF-alpha in rats with ulcerative colitis. World J Gastroenterol. 2003; 9: 1028 - 1033. | |
dc.identifier.citedreference | Esler M, Willett I, Leonard P, et al. Plasma noradrenaline kinetics in humans. J Auton Nerv Syst. 1984; 11: 125 - 144. | |
dc.identifier.citedreference | Chen JD, Lin Z, Pan J, McCallum RW. Abnormal gastric myoelectrical activity and delayed gastric emptying in patients with symptoms suggestive of gastroparesis. Dig Dis Sci. 1996; 41: 1538 - 1545. | |
dc.identifier.citedreference | Stanghellini V, De Giorgio R, Barbara G, et al. Delayed gastric emptying in functional dyspepsia. Curr Treat Options Gastroenterol. 2004; 7: 259 - 264. | |
dc.identifier.citedreference | Zielinski MR, Dunbrasky DL, Taishi P, Souza G, Krueger JM. Vagotomy attenuates brain cytokines and sleep induced by peripherally administered tumor necrosis factor-α and lipopolysaccharide in mice. Sleep. 2013; 36 ( 8 ): 1238A. | |
dc.identifier.citedreference | Iwa M, Tateiwa M, Sakita M, Fujimiya M, Takahashi T. Anatomical evidence of regional specific effects of acupuncture on gastric motor function in rats. Auton Neurosci. 2007; 137: 67 - 76. | |
dc.identifier.citedreference | Black CJ, Drossman DA, Talley NJ, Ruddy J, Ford AC. Functional gastrointestinal disorders: advances in understanding and management. Lancet. 2020; 396 ( 10263 ): 1664 - 1674. | |
dc.identifier.citedreference | Axelrod CH, Saps M. Global dietary patterns and functional gastrointestinal disorders. Children (Basel). 2020; 7 ( 10 ): 152. | |
dc.identifier.citedreference | Schmulson MJ, Drossman DA. What is new in Rome IV. J Neurogastroenterol Motil. 2017; 23 ( 2 ): 151 - 163. | |
dc.identifier.citedreference | Drossman DA, Ghoshal UC, Simren M, et al. Worldwide prevalence and burden of functional gastrointestinal disorders, results of Rome Foundation Global Study. Gastroenterology. 2021; 160: 99 - 114. | |
dc.identifier.citedreference | Ford AC, Marwaha A, Sood R, Moayyedi P. Global prevalence of, and risk factors for, uninvestigated dyspepsia: ameta-analysis. Gut. 2015; 64: 1049 - 1057. | |
dc.identifier.citedreference | El-Serag HB, Talley NJ. Systemic review: the prevalence and clinical course of functional dyspepsia. Aliment Pharmacol Ther. 2004; 19: 643 - 654. | |
dc.identifier.citedreference | Liebregts T, Adam B, Bredack C, et al. Immune activation in patients with irritable bowel syndrome. Gastroenterology. 2007; 132: 913 - 920. | |
dc.identifier.citedreference | Dinan TG, Quigley EM, Ahmed SM, et al. Hypothalamic-pituitary-gut axis dysregulation in irritable bowel syndrome: plasma cytokines as a potential biomarker? Gastroenterology. 2006; 130: 304 - 311. | |
dc.identifier.citedreference | Wauters L, Talley NJ, Walker MM, Tack J, Vanuytsel T. Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut. 2020; 69 ( 3 ): 591 - 600. | |
dc.identifier.citedreference | Miwa H, Oshima T, Tomita T, et al. Recent understanding of the pathophysiology of functional dyspepsia: role of the duodenum as the pathogenic center. J Gastroenterol. 2019; 54: 305 - 311. | |
dc.identifier.citedreference | Talley NJ, Walker MM, Aro P, et al. Non-ulcer dyspepsia and duodenal eosinophilia: an adult endoscopic population-based case-control study. Clin Gastroenterol Hepatol. 2007; 5: 1175 - 1183. | |
dc.identifier.citedreference | Talley NJ. Functional dyspepsia: new insights into pathogenesis and therapy. Korean J Intern Med. 2016; 31 ( 3 ): 444 - 456. | |
dc.identifier.citedreference | Walker MM, Talley NJ. The role of duodenal inflammation in functional dyspepsia. J Clin Gastroenterol. 2017; 51: 12 - 18. | |
dc.identifier.citedreference | Kindt S, Tertychnyy A, de Hertogh G, Geboes K, Tack J. Intestinal immune activation in presumed post-infectious functional dyspepsia. Neurogastroenterol Motil. 2009; 21: 832 - e856. | |
dc.identifier.citedreference | Liebregts T, Adam B, Bredack C, et al. Small bowel homing T cells are associated with symptoms and delayed gastric emptying in functional dyspepsia. Am J Gastroenterol. 2011; 106: 1089 - 1098. | |
dc.identifier.citedreference | Talley NJ, Richard Locke G, Saito YA, et al. Effect of amitriptyline and escitalopram on functional dyspepsia: A multicenter, randomized controlled study. Gastroenterology. 2015; 149: 340 - 349.e2. | |
dc.identifier.citedreference | Shahbazkhani B, Fanaeian MM, Farahvash MJ, et al. Prevalence of non-celiac gluten sensitivity in patients with refractory functional dyspepsia: a randomized double-blind placebo controlled trial. Sci Rep. 2020; 10 ( 1 ): 2401. | |
dc.identifier.citedreference | Puasripun S, Thinrungroj N, Pinyopornpanish K, et al. Efficacy and safety of Clidinium/chlordiazepoxide as an add-on therapy in functional dyspepsia: A randomized, controlled, trial. J Neurogastroenterol Motil. 2020; 26 ( 2 ): 259 - 266. | |
dc.identifier.citedreference | Zhang S, Li S, Liu Y, et al. Electroacupuncture via chronically implanted electrodes improves gastric dysmotility mediated by autonomic-cholinergic mechanisms in a rodent model of functional dyspepsia. Neurogastroenterol Motil. 2018; 30 ( 10 ): e13381. | |
dc.identifier.citedreference | Zhang S, Liu Y, Li S, Ye F, Foreman RD, Chen JDZ. Effects of electroacupuncture on stress-induced gastric dysrhythmia and mechanisms involving autonomic and central nervous systems in functional dyspepsia. Am J Physiol Regul Integr Comp Physiol. 2020; 319 ( 1 ): R106 - R113. | |
dc.identifier.citedreference | Zhou J, Li S, Wang Y, et al. Inhibitory effects and mechanisms of electroacupuncture via chronically implanted electrodes on stress-induced gastric hypersensitivity in rats with neonatal treatment of iodoacetamide. Neuromodulation. 2017; 20 ( 8 ): 767 - 773. | |
dc.identifier.citedreference | Jin Y, Zhao Q, Zhou K, et al. Acupuncture for functional dyspepsia: a single blinded, randomized, controlled trial. Evid Based Complement Alternat Med. 2015; 2015: 904926. | |
dc.identifier.citedreference | Liu S, Peng S, Hou X, Ke M, Chen JD. Transcutaneous electroacupuncture improves dyspeptic symptoms and increases high frequency heart rate variability in patients with functional dyspepsia. Neurogastroenterol Motil. 2008; 20: 1204 - 1211. | |
dc.identifier.citedreference | Takahashi T. Acupuncture for functional gastrointestinal disorders. J Gastroenterol. 2006; 41: 408 - 417. | |
dc.identifier.citedreference | Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003; 421 ( 6921 ): 384 - 388. | |
dc.identifier.citedreference | Wang H, Liao H, Ochani M, et al. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004; 10 ( 11 ): 1216 - 1221. | |
dc.identifier.citedreference | Borovikova LV, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000; 405: 458 - 462. | |
dc.identifier.citedreference | Song J, Yin J, Sallam HS, Bai T, Chen Y, Chen JD. Electroacupuncture improves burn-induced impairment in gastric motility mediated via the vagal mechanism in rats. Neurogastroenterol Motil. 2013; 25: 807 - e635. | |
dc.identifier.citedreference | Lim HD, Kim MH, Lee CY, Namgung U. Anti-inflammatory effects of acupuncture stimulation via the vagus nerve. PloS One. 2016; 11: e0151882. | |
dc.working.doi | NO | en |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.