Show simple item record

Comparing approaches to identify live births using the Transformed Medicaid Statistical Information System

dc.contributor.authorAuty, Samantha G.
dc.contributor.authorDaw, Jamie R.
dc.contributor.authorAdmon, Lindsay K.
dc.contributor.authorGordon, Sarah H.
dc.date.accessioned2024-02-02T14:44:48Z
dc.date.available2025-03-02 09:44:47en
dc.date.available2024-02-02T14:44:48Z
dc.date.issued2024-02
dc.identifier.citationAuty, Samantha G.; Daw, Jamie R.; Admon, Lindsay K.; Gordon, Sarah H. (2024). "Comparing approaches to identify live births using the Transformed Medicaid Statistical Information System." Health Services Research 59(1): n/a-n/a.
dc.identifier.issn0017-9124
dc.identifier.issn1475-6773
dc.identifier.urihttps://hdl.handle.net/2027.42/192176
dc.description.abstractObjectiveTo evaluate the performance of different approaches for identifying live births using Transformed Medicaid Statistical Information System Analytic Files (TAF).Data SourcesThe primary data source for this study were TAF inpatient (IP), other services (OT), and demographic and eligibility files. These data contain administrative claims for Medicaid enrollees in all 50 states and the District of Columbia from January 1, 2018 to December 31, 2018.Study DesignWe compared five approaches for identifying live birth counts obtained from the TAF IP and OT data with the Centers for Disease Control and Prevention (CDC) Natality data—the gold standard for birth counts at the state level.Data Collection/Extraction MethodsThe five approaches used varying combinations of diagnosis and procedure, revenue, and place of service codes to identify live births. Approaches 1 and 2 follow guidance developed by the Centers for Medicare and Medicaid Services (CMS). Approaches 3 and 4 build on the approaches developed by CMS by including all inpatient hospital claims in the OT file and excluding codes related to delivery services for infants, respectively. Approach 5 applied Approach 4 to only the IP file.Principal FindingsApproach 4, which included all inpatient hospital claims in the OT file and excluded codes related to infants to identify deliveries, achieved the best match of birth counts relative to CDC birth record data, identifying 1,656,794 live births—a national overcount of 3.6%. Approaches 1 and 3 resulted in larger overcounts of births (20.5% and 4.5%), while Approaches 2 and 5 resulted in undercounts of births (−3.4% and −6.8%).ConclusionsIncluding claims from both the IP and OT files, and excluding codes unrelated to the delivery episode and those specific to services rendered to infants improves accuracy of live birth identification in the TAF data.
dc.publisherBlackwell Publishing Ltd
dc.publisherWiley Periodicals, Inc.
dc.subject.otheradministrative data uses
dc.subject.othermaternal and perinatal care and outcomes
dc.subject.otherMedicaid
dc.subject.otherobstetrics/gynecology
dc.titleComparing approaches to identify live births using the Transformed Medicaid Statistical Information System
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPublic Health
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/192176/1/hesr14233.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/192176/2/hesr14233_am.pdf
dc.identifier.doi10.1111/1475-6773.14233
dc.identifier.sourceHealth Services Research
dc.identifier.citedreferenceLuke AA, Huang K, Lindley KJ, Carter EB, Joynt Maddox KE. Severe maternal morbidity, race, and rurality: trends using the National Inpatient Sample, 2012–2017. J Womens Health. 2021; 30 ( 6 ): 837 - 847.
dc.identifier.citedreferencePalmsten K, Huybrechts KF, Mogun H, et al. Harnessing the Medicaid Analytic eXtract (MAX) to evaluate medications in pregnancy: design considerations. PloS One. 2013; 8 ( 6 ): e67405.
dc.identifier.citedreferenceHeins SE, Faherty LJ, Kranz AM. A comparison of approaches to identify live births using the medicaid analytic extract. Health Serv Outcomes Res Methodol. 2022; 22 ( 1 ): 49 - 58.
dc.identifier.citedreferenceMetcalfe D, Zogg CK, Haut ER, Pawlik TM, Haider AH, Perry DC. Data resource profile: state inpatient databases. Int J Epidemiol. 2019; 48 ( 6 ): 1742 - 1742h.
dc.identifier.citedreferenceCreanga AA. Maternal mortality in the United States: a review of contemporary data and their limitations. Clin Obstet Gynecol. 2018; 61 ( 2 ): 296 - 306.
dc.identifier.citedreferenceDQ Atlas. Backgrounds and methods resource: race and ethnicity. 2020. https://www.medicaid.gov/dq-atlas/landing/resources/downloads
dc.identifier.citedreferenceMatcho A, Ryan P, Fife D, Gifkins D, Knoll C, Friedman A. Inferring pregnancy episodes and outcomes within a network of observational databases. PloS One. 2018; 13 ( 2 ): e0192033.
dc.identifier.citedreferenceHornbrook MC, Whitlock EP, Berg CJ, et al. Development of an algorithm to identify pregnancy episodes in an integrated health care delivery system. Health Serv Res. 2007; 42 ( 2 ): 908 - 927.
dc.identifier.citedreferenceSarayani A, Wang X, Thai TN, Albogami Y, Jeon N, Winterstein AG. Impact of the transition from ICD–9–CM to ICD–10–CM on the identification of pregnancy episodes in US Health Insurance Claims Data. Clin Epidemiol. 2020; 12: 1129 - 1138.
dc.identifier.citedreferenceEly D, Martin J. User guide to the 2018 natality public use file. 2018. https://ftp.cdc.gov/pub/health_statistics/nchs/dataset_documentation/DVS/natality/UserGuide2018-508.pdf
dc.identifier.citedreferenceMartin JA, Hamilton BE, Osterman JK, Driscoll AK. Births: final data for 2019. Natl Vital Stat Rep. 2021;70(2):1-51.
dc.identifier.citedreferenceCenters for Medicare and Medicaid Services. Use of the Same Medicaid Identification Number for Mother and Newborn Services in 2016. 2021. https://www.medicaid.gov/dq-atlas/downloads/supplemental/7011_Shared_Medicaid_IDs_2016.pdf
dc.identifier.citedreferenceServices C for M and M. ICD-10-CM official guidelines for coding and reporting FY 2022. 2022. https://www.cms.gov/files/document/fy-2022-icd-10-cm-coding-guidelines-updated-02012022.pdf
dc.identifier.citedreferenceCenter for Medicare and Medicaid Services, Medicaid Innovation Accelerator Program. Identifying beneficiaries with severe maternal morbidity (SMM). 2021. https://www.medicaid.gov/medicaid/data-and-systems/downloads/macbis/smm_techspecs.docx
dc.identifier.citedreferenceMike Enos CPC, CPMA C-I. Is it possible to make OB coding less complicated? Contemp Ob Gyn. 2019; 64 ( 7 ): 31 - 34.
dc.identifier.citedreferenceTeitler JO, Das D, Kruse L, Reichman NE. Prenatal care and subsequent birth intervals. Perspect Sex Reprod Health. 2012; 44 ( 1 ): 13 - 21.
dc.identifier.citedreferencePatel KS, Bakk J, Pensak M, DeFranco E. Influence of Medicaid expansion on short interpregnancy interval rates in the United States. Am J Obstet Gynecol MFM. 2021; 3 ( 6 ): 100484. doi: 10.1016/j.ajogmf.2021.100484
dc.identifier.citedreferenceLiberty A, Yee K, Darney BG, Lopez-Defede A, Rodriguez MI. Coverage of immediate postpartum long-acting reversible contraception has improved birth intervals for at-risk populations. Am J Obstet Gynecol. 2020; 222 ( 4 ): S886-e1.
dc.identifier.citedreferenceMogos MF, Liese KL, Thornton PD, Manuck TA, O’Brien WD Jr, McFarlin BL. Inpatient maternal mortality in the United States, 2002–2014. Nurs Res. 2020; 69 ( 1 ): 42 - 50.
dc.identifier.citedreferenceDQ Atlas. Exploring data quality (DQ) assessments by topic. 2020. https://www.medicaid.gov/dq-atlas/landing/topics/info
dc.identifier.citedreferenceHimes KP, Bodnar LM. Validation of criteria to identify severe maternal morbidity. Paediatr Perinat Epidemiol. 2020; 34 ( 4 ): 408 - 415.
dc.identifier.citedreferenceSarsam SE, Elliott JP, Lam GK. Management of wound complications from cesarean delivery. Obstet Gynecol Surv. 2005; 60 ( 7 ): 462 - 473.
dc.identifier.citedreferenceKawakita T, Landy HJ. Surgical site infections after cesarean delivery: epidemiology, prevention and treatment. Matern Heal Neonatol Perinatol. 2017; 3 ( 1 ): 1 - 9.
dc.identifier.citedreferenceHoyert DL. Maternal Mortality Rates in the United States, 2020. Division of Vital Statistics, Centers for Disease Control and Prevention; 2022. https://www.cdc.gov/nchs/data/hestat/maternal-mortality/2020/maternal-mortality-rates-2020.htm
dc.identifier.citedreferenceAdmon LK, Winkelman TNA, Zivin K, Terplan M, Mhyre JM, Dalton VK. Racial and ethnic disparities in the incidence of severe maternal morbidity in the United States, 2012–2015. Obstet Gynecol. 2018; 132 ( 5 ): 1158 - 1166.
dc.identifier.citedreferenceVilda D, Wallace M, Dyer L, Harville E, Theall K. Income inequality and racial disparities in pregnancy-related mortality in the US. SSM Popul Health. 2019; 9: 100477.
dc.identifier.citedreferenceKozhimannil KB, Interrante JD, Henning-Smith C, Admon LK. Rural-urban differences in severe maternal morbidity and mortality in the US, 2007–15. Health Aff. 2019; 38 ( 12 ): 2077 - 2085.
dc.identifier.citedreferencePetersen EE, Davis NL, Goodman D, et al. Racial/ethnic disparities in pregnancy-related deaths—United States, 2007–2016. Morb Mortal Wkly Rep. 2019; 68 ( 35 ): 762 - 765.
dc.identifier.citedreferenceNational Center for Health Statistics. CDC WONDER: Natality, 2018–2020. Centers for Disease Control and Prevention; 2021.
dc.identifier.citedreferenceMedicaid and CHIP Payment and Access Commission. Medicaid payment initiatives to improve maternal and birth outcomes. 2019. https://www.macpac.gov/wp-content/uploads/2019/04/Medicaid-Payment-Initiatives-to-Improve-Maternal-and-Birth-Outcomes.pdf
dc.identifier.citedreferenceGourevitch RA, Peahl AF, McConnell MSN, Shah N. Understanding the impact of prenatal care: improving metrics, data, and evaluation. Health Affairs Forefront; 2020:10. https://scholar.google.com/scholar?q=Understanding+the+impact+of+prenatal+care:+improving+metrics,+data,+and+evaluation&hl=en&as_sdt=0&as_vis=1&oi=scholart
dc.identifier.citedreferenceNguyen JK, Sanghavi P. A national assessment of legacy versus new generation Medicaid data. Health Serv Res. 2022; 57 ( 4 ): 944 - 956.
dc.identifier.citedreferenceNysenbaum JB, Bouchery E, Malsberger R. Availability and usability of behavioral health organization encounter data in MAX 2009. Medicare Medicaid Res Rev. 2014; 4 ( 2 ): E1 - E12.
dc.identifier.citedreferenceByrd VLH, Dodd AH. Assessing the Usability of Encounter Data for Enrollees in Comprehensive Managed Care 2010-2011. Mathematica Policy Research; 2015.
dc.identifier.citedreferenceByrd VLH, Dodd AH. Assessing the Usability of Encounter Data for Enrollees in Comprehensive Managed Care across MAX 2007-2009. Mathematica Policy Research; 2012.
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.