Show simple item record

Significant Midlatitude Bubble-Like Ionospheric Super-Depletion Structure (BLISS) and Dynamic Variation of Storm-Enhanced Density Plume During the 23 April 2023 Geomagnetic Storm

dc.contributor.authorAa, Ercha
dc.contributor.authorZhang, Shun-Rong
dc.contributor.authorZou, Shasha
dc.contributor.authorWang, Wenbin
dc.contributor.authorWang, Zihan
dc.contributor.authorCai, Xuguang
dc.contributor.authorErickson, Philip J.
dc.contributor.authorCoster, Anthea J.
dc.date.accessioned2024-04-01T20:16:42Z
dc.date.available2025-04-01 16:16:39en
dc.date.available2024-04-01T20:16:42Z
dc.date.issued2024-03
dc.identifier.citationAa, Ercha; Zhang, Shun-Rong ; Zou, Shasha; Wang, Wenbin; Wang, Zihan; Cai, Xuguang; Erickson, Philip J.; Coster, Anthea J. (2024). "Significant Midlatitude Bubble- Like Ionospheric Super- Depletion Structure (BLISS) and Dynamic Variation of Storm- Enhanced Density Plume During the 23 April 2023 Geomagnetic Storm." Space Weather 22(3): n/a-n/a.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/192710
dc.description.abstractThis paper investigates the midlatitude ionospheric disturbances over the American/Atlantic longitude sector during an intense geomagnetic storm on 23 April 2023. The study utilized a combination of ground-based observations (Global Navigation Satellite System total electron content and ionosonde) along with measurements from multiple satellite missions (GOLD, Swarm, Defense Meteorological Satellite Program, and TIMED/GUVI) to analyze storm-time electrodynamics and neutral dynamics. We found that the storm main phase was characterized by distinct midlatitude ionospheric density gradient structures as follows: (a) In the European-Atlantic longitude sector, a significant midlatitude bubble-like ionospheric super-depletion structure (BLISS) was observed after sunset. This BLISS appeared as a low-density channel extending poleward/westward and reached ∼40° geomagnetic latitude, corresponding to an APEX height of ∼5,000 km. (b) Coincident with the BLISS, a dynamic storm-enhanced density plume rapidly formed and decayed at local afternoon in the North American sector, with the plume intensity being doubled and halved in just a few hours. (c) The simultaneous occurrence of these strong yet opposite midlatitude gradient structures could be mainly attributed to common key drivers of prompt penetration electric fields and subauroral polarization stream electric fields. This shed light on the important role of storm-time electrodynamic processes in shaping global ionospheric disturbances.Plain Language SummaryThe storm-time midlatitude ionosphere is a highly dynamic region that can exhibit much more pronounced electron density gradients and disturbances than expected. The combined data from ground-based and satellite measurements provided valuable insights into the intricate behavior of the midlatitude ionosphere during an intense geomagnetic storm on 23 April 2023. The midlatitude ionosphere was characterized by significant electron density gradient structures, comprising both phenomenal density depletion and exceptional enhancements. Notably, a remarkable band-like ionospheric super-depletion structure was observed in local dusk, which extended to ∼40° geomagnetic latitude, corresponding to an altitude of ∼5,000 km above the geomagnetic equator. In contrast, a significant midlatitude ionospheric density enhancement plume appeared simultaneously in local afternoon, which exhibited a dynamic variation with its intensity being quickly doubled and halved in just a few hours. The synchronous occurrence of these striking yet opposing density gradients highlights the importance of electrodynamic effect driven by common key drivers of storm-time perturbed electric fields. This underscores the complex and interconnected nature of the ionospheric response during intense geomagnetic storms.Key PointsThe storm main phase was characterized by coincident nightside bubble-like ionospheric super-depletion structure (BLISS) and dayside storm-enhanced density (SED)The BLISS manifested as a poleward/westward-streaming channel and extended to ∼40 MLAT, corresponding to an APEX height of ∼5,000 kmThe SED plume experienced a dynamic variation with the plume intensity being quickly doubled and halved in just a few hours
dc.publisherAmerican Geophysical Union (AGU)
dc.publisherWiley Periodicals, Inc.
dc.subject.otherEPBs
dc.subject.otherSAPS
dc.subject.otherSED plume
dc.subject.otherbubble-like ionospheric super-depletion structure
dc.subject.otherionospheric storm
dc.titleSignificant Midlatitude Bubble-Like Ionospheric Super-Depletion Structure (BLISS) and Dynamic Variation of Storm-Enhanced Density Plume During the 23 April 2023 Geomagnetic Storm
dc.typeArticle
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/192710/1/swe21675.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/192710/2/swe21675_am.pdf
dc.identifier.doi10.1029/2023SW003704
dc.identifier.sourceSpace Weather
dc.identifier.citedreferencePrölss, G. W. ( 2008 ). Ionospheric storms at mid-latitude: A short review (Vol. 181, pp. 9 – 24 ). Washington DC American Geophysical Union Geophysical Monograph Series. https://doi.org/10.1029/181GM03
dc.identifier.citedreferencePi, X., Mannucci, A. J., Lindqwister, U. J., & Ho, C. M. ( 1997 ). Monitoring of global ionospheric irregularities using the Worldwide GPS Network. Geophysical Research Letters, 24 ( 18 ), 2283 – 2286. https://doi.org/10.1029/97GL02273
dc.identifier.citedreferenceRetterer, J. M., & Roddy, P. ( 2014 ). Faith in a seed: On the origins of equatorial plasma bubbles. Annales Geophysicae, 32 ( 5 ), 485 – 498. https://doi.org/10.5194/angeo-32-485-2014
dc.identifier.citedreferenceRideout, W., & Coster, A. ( 2006 ). Automated gps processing for global total electron content data. GPS Solutions, 10 ( 3 ), 219 – 228. https://doi.org/10.1007/s10291-006-0029-5
dc.identifier.citedreferenceRodrigues, F. S., Socola, J. G., Moraes, A. O., Martinis, C., & Hickey, D. A. ( 2021 ). On the properties of and ionospheric conditions associated with a mid-latitude scintillation event observed over southern United States. Space Weather, 19 ( 6 ), e2021SW002744. https://doi.org/10.1029/2021SW002744
dc.identifier.citedreferenceShiokawa, K., Otsuka, Y., Ogawa, T., & Wilkinson, P. ( 2004 ). Time evolution of high-altitude plasma bubbles imaged at geomagnetic conjugate points. Annales Geophysicae, 22 ( 9 ), 3137 – 3143. https://doi.org/10.5194/angeo-22-3137-2004
dc.identifier.citedreferenceSori, T., Shinbori, A., Otsuka, Y., Nishioka, M., Perwitasari, S., & Nishitani, N. ( 2023 ). First detection of midlatitude plasma bubble by SuperDARN during a geomagnetic storm on May 27 and 28, 2017. Journal of Geophysical Research: Space Physics, 128 ( 4 ), e2022JA031157. https://doi.org/10.1029/2022JA031157
dc.identifier.citedreferenceSousasantos, J., Gomez Socola, J., Rodrigues, F. S., Eastes, R. W., Brum, C. G. M., & Terra, P. ( 2023 ). Severe L-band scintillation over low-to-mid latitudes caused by an extreme equatorial plasma bubble: Joint observations from ground-based monitors and GOLD. Earth Planets and Space, 75 ( 1 ), 41. https://doi.org/10.1186/s40623-023-01797-5
dc.identifier.citedreferenceStrickland, D. J., Evans, J. S., & Paxton, L. J. ( 1995 ). Satellite remote sensing of thermospheric O/N 2 and solar EUV. 1. Theory. Journal of Geophysical Research, 100 ( A7 ), 12217 – 12226. https://doi.org/10.1029/95JA00574
dc.identifier.citedreferenceSultan, P. J. ( 1996 ). Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. Journal of Geophysical Research, 101 ( A12 ), 26875 – 26892. https://doi.org/10.1029/96JA00682
dc.identifier.citedreferenceThomas, E. G., Baker, J. B. H., Ruohoniemi, J. M., Clausen, L. B. N., Coster, A. J., Foster, J. C., & Erickson, P. J. ( 2013 ). Direct observations of the role of convection electric field in the formation of a polar tongue of ionization from storm enhanced density. Journal of Geophysical Research: Space Physics, 118 ( 3 ), 1180 – 1189. https://doi.org/10.1002/jgra.50116
dc.identifier.citedreferenceTsurutani, B. T., Verkhoglyadova, O. P., Mannucci, A. J., Saito, A., Araki, T., Yumoto, K., et al. ( 2008 ). Prompt penetration electric fields (PPEFs) and their ionospheric effects during the great magnetic storm of 30-31 October 2003. Journal of Geophysical Research, 113 ( A5 ), A05311. https://doi.org/10.1029/2007JA012879
dc.identifier.citedreferenceTulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Gopi Krishna, S., Sridharan, R., & Ravindran, S. ( 2008 ). Local time dependent response of postsunset ESF during geomagnetic storms. Journal of Geophysical Research, 113 ( A7 ), A07310. https://doi.org/10.1029/2007JA012922
dc.identifier.citedreferenceUniversity of Massachusetts Lowell DIDB database of Global Ionospheric Radio Observatory. ( 2023 ). Ionosonde data [Dataset]. https://giro.uml.edu/didbase/scaled.php
dc.identifier.citedreferenceVierinen, J., Coster, A. J., Rideout, W. C., Erickson, P. J., & Norberg, J. ( 2016 ). Statistical framework for estimating GNSS bias. Atmospheric Measurement Techniques, 9 ( 3 ), 1303 – 1312. https://doi.org/10.5194/amt-9-1303-2016
dc.identifier.citedreferenceVlasov, M., Kelley, M. C., & Kil, H. ( 2003 ). Analysis of ground-based and satellite observations of F-region behavior during the great magnetic storm of July 15, 2000. Journal of Atmospheric and Solar-Terrestrial Physics, 65 ( 11–13 ), 1223 – 1234. https://doi.org/10.1016/j.jastp.2003.08.012
dc.identifier.citedreferenceWang, H., & Lühr, H. ( 2013 ). Seasonal variation of the ion upflow in the topside ionosphere during SAPS (subauroral polarization stream) periods. Annales Geophysicae, 31 ( 9 ), 1521 – 1534. https://doi.org/10.5194/angeo-31-1521-2013
dc.identifier.citedreferenceWang, W., Talaat, E. R., Burns, A. G., Emery, B., Hsieh, S.-Y., Lei, J., & Xu, J. ( 2012 ). Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations. Journal of Geophysical Research, 117 ( A7 ), A07301. https://doi.org/10.1029/2012JA017656
dc.identifier.citedreferenceWang, Z., Zou, S., Liu, L., Ren, J., & Aa, E. ( 2021 ). Hemispheric asymmetries in the mid latitude ionosphere during the September 7–8, 2017 storm: Multi instrument observations. Journal of Geophysical Research: Space Physics, 126 ( 4 ), e28829. https://doi.org/10.1029/2020JA028829
dc.identifier.citedreferenceXiong, C., Stolle, C., Lühr, H., Park, J., Fejer, B. G., & Kervalishvili, G. N. ( 2016 ). Scale analysis of equatorial plasma irregularities derived from Swarm constellation. Earth Planets and Space, 68 ( 1 ), 121. https://doi.org/10.1186/s40623-016-0502-5
dc.identifier.citedreferenceYeh, H. C., & Foster, J. C. ( 1990 ). Storm tide heavy ion outflow at mid-latitude. Journal of Geophysical Research, 95 ( A6 ), 7881 – 7891. https://doi.org/10.1029/JA095iA06p07881
dc.identifier.citedreferenceZakharenkova, I., & Cherniak, I. ( 2020 ). When plasma streams tie up equatorial plasma irregularities with auroral ones. Space Weather, 18 ( 2 ), e02375. https://doi.org/10.1029/2019SW002375
dc.identifier.citedreferenceZhai, C., Cai, X., Wang, W., Coster, A., Qian, L., Solomon, S. C., et al. ( 2023 ). Mid-latitude ionospheric response to a weak geomagnetic activity event during solar minimum. Journal of Geophysical Research: Space Physics, 128 ( 1 ), e2022JA030908. https://doi.org/10.1029/2022JA030908
dc.identifier.citedreferenceZhang, S.-R., & Aa, E. ( 2021 ). Ionospheric electron density large gradients at midlatitudes. In Y. Nishimura, O. Verkhoglyadova, Y. Deng, & S.-R. Zhang (Eds.), Cross-scale coupling and energy transfer in the magnetosphere-ionosphere-thermosphere system (pp. 175 – 193 ). Elsevier.
dc.identifier.citedreferenceZhang, S.-R., Erickson, P. J., Coster, A. J., Rideout, W., Vierinen, J., Jonah, O., & Goncharenko, L. P. ( 2019 ). Subauroral and polar traveling ionospheric disturbances during the 7-9 September 2017 storms. Space Weather, 17 ( 12 ), 1748 – 1764. https://doi.org/10.1029/2019SW002325
dc.identifier.citedreferenceZhang, S.-R., Nishimura, Y., Erickson, P. J., Aa, E., Kil, H., Deng, Y., et al. ( 2022 ). Traveling ionospheric disturbances in the vicinity of storm-enhanced density at midlatitudes. Journal of Geophysical Research: Space Physics, 127 ( 8 ), e30429. https://doi.org/10.1029/2022JA030429
dc.identifier.citedreferenceZhang, Y., Paxton, L. J., Morrison, D., Wolven, B., Kil, H., Meng, C. I., et al. ( 2004 ). O/N 2 changes during 1-4 October 2002 storms: IMAGE SI-13 and TIMED/GUVI observations. Journal of Geophysical Research, 109 ( A10 ), A10308. https://doi.org/10.1029/2004JA010441
dc.identifier.citedreferenceZou, S., Moldwin, M. B., Ridley, A. J., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2014 ). On the generation/decay of the storm-enhanced density plumes: Role of the convection flow and field-aligned ion flow. Journal of Geophysical Research: Space Physics, 119 ( 10 ), 8543 – 8559. https://doi.org/10.1002/2014JA020408
dc.identifier.citedreferenceZou, S., Ridley, A. J., Moldwin, M. B., Nicolls, M. J., Coster, A. J., Thomas, E. G., & Ruohoniemi, J. M. ( 2013 ). Multi-instrument observations of SED during 24-25 October 2011 storm: Implications for SED formation processes. Journal of Geophysical Research: Space Physics, 118 ( 12 ), 7798 – 7809. https://doi.org/10.1002/2013JA018860
dc.identifier.citedreferenceAa, E., Huang, W., Liu, S., Ridley, A., Zou, S., Shi, L., et al. ( 2018 ). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Weather, 16 ( 3 ), 321 – 331. https://doi.org/10.1002/2017SW001776
dc.identifier.citedreferenceAa, E., Zhang, S., Erickson, P. J., Coster, A. J., Goncharenko, L. P., Varney, R. H., & Eastes, R. ( 2021 ). Salient midlatitude ionosphere-thermosphere disturbances associated with SAPS during a minor but geo-effective storm at deep solar minimum. Journal of Geophysical Research: Space Physics, 126 ( 7 ), e2021JA029509. https://doi.org/10.1029/2021ja029509
dc.identifier.citedreferenceAa, E., Zhang, S.-R., Liu, G., Eastes, R. W., Wang, W., Karan, D. K., et al. ( 2023 ). Statistical analysis of equatorial plasma bubbles climatology and multi-day periodicity using GOLD observations. Geophysical Research Letters, 50 ( 8 ), e2023GL103510. https://doi.org/10.1029/2023GL103510
dc.identifier.citedreferenceAa, E., Zhang, S.-R., Wang, W., Erickson, P. J., & Coster, A. J. ( 2023 ). Multiple longitude sector storm-enhanced density (SED) and long-lasting subauroral polarization stream (SAPS) during the 26–28 February 2023 geomagnetic storm. Journal of Geophysical Research: Space Physics, 128 ( 9 ), e2023JA031815. https://doi.org/10.1029/2023JA031815
dc.identifier.citedreferenceAa, E., Zhang, S.-R., Wang, W., Erickson, P. J., Qian, L., Eastes, R., et al. ( 2022 ). Pronounced suppression and X-pattern merging of equatorial ionization anomalies after the 2022 Tonga volcano eruption. Journal of Geophysical Research: Space Physics, 127 ( 6 ), e30527. https://doi.org/10.1029/2022JA030527
dc.identifier.citedreferenceAa, E., Zou, S., Eastes, R., Karan, D. K., Zhang, S.-R., Erickson, P. J., & Coster, A. J. ( 2020 ). Coordinated ground-based and space-based observations of equatorial plasma bubbles. Journal of Geophysical Research: Space Physics, 125 ( 1 ), e27569. https://doi.org/10.1029/2019JA027569
dc.identifier.citedreferenceAa, E., Zou, S., Ridley, A., Zhang, S., Coster, A. J., Erickson, P. J., et al. ( 2019 ). Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather, 17 ( 2 ), 285 – 298. https://doi.org/10.1029/2018SW002101
dc.identifier.citedreferenceAarons, J. ( 1997 ). Global positioning system phase fluctuations at auroral latitudes. Journal of Geophysical Research, 102 ( A8 ), 17219 – 17232. https://doi.org/10.1029/97JA01118
dc.identifier.citedreferenceAbadi, P., Otsuka, Y., & Tsugawa, T. ( 2015 ). Effects of pre-reversal enhancement of E × B drift on the latitudinal extension of plasma bubble in Southeast Asia. Earth Planets and Space, 67 ( 1 ), 74. https://doi.org/10.1186/s40623-015-0246-7
dc.identifier.citedreferenceAbdu, M. A. ( 2012 ). Equatorial spread F/plasma bubble irregularities under storm time disturbance electric fields. Journal of Atmospheric and Solar-Terrestrial Physics, 75, 44 – 56. https://doi.org/10.1016/j.jastp.2011.04.024
dc.identifier.citedreferenceAggson, T. L., Burke, W. J., Maynard, N. C., Hanson, W. B., Anderson, P. C., Slavin, J. A., et al. ( 1992 ). Equatorial bubbles updrafting at supersonic speeds. Journal of Geophysical Research, 97 ( A6 ), 8581 – 8590. https://doi.org/10.1029/92JA00644
dc.identifier.citedreferenceAnderson, P. C., Heelis, R. A., & Hanson, W. B. ( 1991 ). The ionospheric signatures of rapid subauroral ion drifts. Journal of Geophysical Research, 96 ( A4 ), 5785 – 5792. https://doi.org/10.1029/90JA02651
dc.identifier.citedreferenceBalan, N., Shiokawa, K., Otsuka, Y., Kikuchi, T., Vijaya Lekshmi, D., Kawamura, S., et al. ( 2010 ). A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. Journal of Geophysical Research, 115 ( A2 ), A02304. https://doi.org/10.1029/2009JA014515
dc.identifier.citedreferenceBao, S., Wang, W., Sorathia, K., Merkin, V., Toffoletto, F., Lin, D., et al. ( 2023 ). The relation among the ring current, subauroral polarization stream, and the geospace plume: MAGE simulation of the 31 March 2001 super storm. Journal of Geophysical Research: Space Physics, 128 ( 12 ), e2023JA031923. https://doi.org/10.1029/2023JA031923
dc.identifier.citedreferenceBasu, S., Basu, S., Rich, F. J., Groves, K. M., MacKenzie, E., Coker, C., et al. ( 2007 ). Response of the equatorial ionosphere at dusk to penetration electric fields during intense magnetic storms. Journal of Geophysical Research, 112 ( A8 ), A08308. https://doi.org/10.1029/2006JA012192
dc.identifier.citedreferenceBlanc, M., & Richmond, A. D. ( 1980 ). The ionospheric disturbance dynamo. Journal of Geophysical Research, 85 ( A4 ), 1669 – 1686. https://doi.org/10.1029/JA085iA04p01669
dc.identifier.citedreferenceBuonsanto, M. J. ( 1999 ). Ionospheric storms—A review. Space Science Reviews, 88 ( 3/4 ), 563 – 601. https://doi.org/10.1023/A:1005107532631
dc.identifier.citedreferenceBurke, W. J., Donatelli, D. E., Sagalyn, R. C., & Kelley, M. C. ( 1979 ). Low density regions observed at high altitudes and their connection with equatorial spread F. Planetary and Space Science, 27 ( 5 ), 593 – 601. https://doi.org/10.1016/0032-0633(79)90157-0
dc.identifier.citedreferenceCai, X., Burns, A. G., Wang, W., Qian, L., Liu, J., Solomon, S. C., et al. ( 2021 ). Observation of Postsunset OI 135.6 nm radiance enhancement over South America by the GOLD mission. Journal of Geophysical Research: Space Physics, 126 ( 2 ), e28108. https://doi.org/10.1029/2020JA028108
dc.identifier.citedreferenceCai, X., Qian, L., Wang, W., McInerney, J. M., Liu, H.-L., & Eastes, R. W. ( 2022 ). Investigation of the post-sunset extra electron density peak poleward of the equatorial ionization anomaly southern crest. Journal of Geophysical Research: Space Physics, 127 ( 9 ). e2022JA030755. https://doi.org/10.1029/2022JA030755
dc.identifier.citedreferenceCai, X., Wang, W., Eastes, R. W., Qian, L., Pedatella, N. M., Aa, E., et al. ( 2023 ). Equatorial ionization anomaly discontinuity observed by GOLD, COSMIC-2, and ground-based GPS receivers’ network. Geophysical Research Letters, 50 ( 10 ), e2023GL102994. https://doi.org/10.1029/2023GL102994
dc.identifier.citedreferenceChang, H., Kil, H., Sun, A. K., Zhang, S.-R., & Lee, J. ( 2022 ). Ionospheric disturbances in low- and midlatitudes during the geomagnetic storm on 26 August 2018. Journal of Geophysical Research: Space Physics, 127 ( 2 ), e2021JA029879. https://doi.org/10.1029/2021JA029879
dc.identifier.citedreferenceCherniak, I., & Zakharenkova, I. ( 2016 ). First observations of super plasma bubbles in Europe. Geophysical Research Letters, 43 ( 21 ), 11137 – 11145. https://doi.org/10.1002/2016GL071421
dc.identifier.citedreferenceCherniak, I., & Zakharenkova, I. ( 2022 ). Development of the storm-induced ionospheric irregularities at equatorial and middle latitudes during the 25–26 August 2018 geomagnetic storm. Space Weather, 20 ( 2 ), e2021SW002891. https://doi.org/10.1029/2021SW002891
dc.identifier.citedreferenceCoster, A. J., Colerico, M. J., Foster, J. C., Rideout, W., & Rich, F. ( 2007 ). Longitude sector comparisons of storm enhanced density. Geophysical Research Letters, 34 ( 18 ), L18105. https://doi.org/10.1029/2007GL030682
dc.identifier.citedreferenceCoster, A. J., & Skone, S. ( 2009 ). Monitoring storm-enhanced density using IGS reference station data. Journal of Geodesy, 83 ( 3–4 ), 345 – 351. https://doi.org/10.1007/s00190-008-0272-3
dc.identifier.citedreferenceEastes, R. W., McClintock, W. E., Burns, A. G., Anderson, D. N., Andersson, L., Aryal, S., et al. ( 2020 ). Initial observations by the GOLD mission. Journal of Geophysical Research: Space Physics, 125 ( 7 ), e27823. https://doi.org/10.1029/2020JA027823
dc.identifier.citedreferenceEastes, R. W., McClintock, W. E., Burns, A. G., Anderson, D. N., Andersson, L., Codrescu, M., et al. ( 2017 ). The global-scale observations of the limb and disk (GOLD) mission. Space Science Reviews, 212 ( 1–2 ), 383 – 408. https://doi.org/10.1007/s11214-017-0392-2
dc.identifier.citedreferenceErickson, P. J., Goncharenko, L. P., Nicolls, M. J., Ruohoniemi, M., & Kelley, M. C. ( 2010 ). Dynamics of North American sector ionospheric and thermospheric response during the November 2004 superstorm. Journal of Atmospheric and Solar-Terrestrial Physics, 72 ( 4 ), 292 – 301. https://doi.org/10.1016/j.jastp.2009.04.001
dc.identifier.citedreferenceEuropean Space Agency. ( 2023 ). Swarm data [Dataset]. https://swarm-diss.eo.esa.int/
dc.identifier.citedreferenceFejer, B. G., Scherliess, L., & de Paula, E. R. ( 1999 ). Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. Journal of Geophysical Research, 104 ( A9 ), 19859 – 19870. https://doi.org/10.1029/1999JA900271
dc.identifier.citedreferenceFoster, J. C. ( 1993 ). Storm time plasma transport at middle and high latitudes. Journal of Geophysical Research, 98 ( A2 ), 1675 – 1690. https://doi.org/10.1029/92JA02032
dc.identifier.citedreferenceFoster, J. C., & Burke, W. J. ( 2002 ). SAPS: A new categorization for sub-auroral electric fields. EOS Transactions, 83 ( 36 ), 393 – 394. https://doi.org/10.1029/2002EO000289
dc.identifier.citedreferenceFoster, J. C., Coster, A. J., Erickson, P. J., Holt, J. M., Lind, F. D., Rideout, W., et al. ( 2005 ). Multiradar observations of the polar tongue of ionization. Journal of Geophysical Research, 110 ( A9 ), A09S31. https://doi.org/10.1029/2004JA010928
dc.identifier.citedreferenceFoster, J. C., Erickson, P. J., Walsh, B. M., Wygant, J. R., Coster, A. J., & Zhang, Q.-H. ( 2020 ). Multi-point observations of the geospace plume. In Dayside magnetosphere interactions (pp. 243 – 264 ). American Geophysical Union (AGU). https://doi.org/10.1002/9781119509592.ch14
dc.identifier.citedreferenceFoster, J. C., & Rich, F. J. ( 1998 ). Prompt midlatitude electric field effects during severe geomagnetic storms. Journal of Geophysical Research, 103 ( A11 ), 26367 – 26372. https://doi.org/10.1029/97JA03057
dc.identifier.citedreferenceFoster, J. C., Rideout, W., Sandel, B., Forrester, W. T., & Rich, F. J. ( 2007 ). On the relationship of SAPS to storm-enhanced density. Journal of Atmospheric and Solar-Terrestrial Physics, 69 ( 3 ), 303 – 313. https://doi.org/10.1016/j.jastp.2006.07.021
dc.identifier.citedreferenceFuller-Rowell, T. J., Codrescu, M. V., Moffett, R. J., & Quegan, S. ( 1994 ). Response of the thermosphere and ionosphere to geomagnetic storms. Journal of Geophysical Research, 99 ( A3 ), 3893 – 3914. https://doi.org/10.1029/93JA02015
dc.identifier.citedreferenceGlobal-scale Observations of the Limb and Disk. ( 2023 ). Global-scale observations of the limb and disk data [Dataset]. https://gold.cs.ucf.edu/data/
dc.identifier.citedreferenceGoldstein, J., Sandel, B. R., Hairston, M. R., & Reiff, P. H. ( 2003 ). Control of plasmaspheric dynamics by both convection and sub-auroral polarization stream. Geophysical Research Letters, 30 ( 24 ), 2243. https://doi.org/10.1029/2003GL018390
dc.identifier.citedreferenceGreenspan, M. E., Rasmussen, C. E., Burke, W. J., & Abdu, M. A. ( 1991 ). Equatorial density depletions observed at 840 km during the great magnetic storm of March 1989. Journal of Geophysical Research, 96 ( A8 ), 13931 – 13942. https://doi.org/10.1029/91JA01264
dc.identifier.citedreferenceHeelis, R. A., Sojka, J. J., David, M., & Schunk, R. W. ( 2009 ). Storm time density enhancements in the middle-latitude dayside ionosphere. Journal of Geophysical Research, 114 ( A3 ), A03315. https://doi.org/10.1029/2008JA013690
dc.identifier.citedreferenceHuang, C.-S., Foster, J. C., & Sahai, Y. ( 2007 ). Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause. Journal of Geophysical Research, 112 ( A5 ), A05315. https://doi.org/10.1029/2007JA012307
dc.identifier.citedreferenceImmel, T. J., Crowley, G., Craven, J. D., & Roble, R. G. ( 2001 ). Dayside enhancements of thermospheric O/N 2 following magnetic storm onset. Journal of Geophysical Research, 106 ( A8 ), 15471 – 15488. https://doi.org/10.1029/2000JA000096
dc.identifier.citedreferenceKaran, D. K., Daniell, R. E., England, S. L., Martinis, C. R., Eastes, R. W., Burns, A. G., & McClintock, W. E. ( 2020 ). First zonal drift velocity measurement of equatorial plasma bubbles (EPBs) from a geostationary orbit using GOLD data. Journal of Geophysical Research: Space Physics, 125 ( 9 ), e28173. https://doi.org/10.1029/2020JA028173
dc.identifier.citedreferenceKatamzi-Joseph, Z. T., Habarulema, J. B., & Hernández-Pajares, M. ( 2017 ). Midlatitude postsunset plasma bubbles observed over Europe during intense storms in April 2000 and 2001. Space Weather, 15 ( 9 ), 1177 – 1190. https://doi.org/10.1002/2017SW001674
dc.identifier.citedreferenceKelley, I. J., Kunduri, B. S. R., Baker, J. B. H., Ruohoniemi, J. M., & Shepherd, S. G. ( 2023 ). Storm time electrified MSTIDs observed over mid-latitude North America. Journal of Geophysical Research: Space Physics, 128 ( 3 ), e2022JA031115. https://doi.org/10.1029/2022JA031115
dc.identifier.citedreferenceKelley, M. C., Makela, J. J., Chau, J. L., & Nicolls, M. J. ( 2003 ). Penetration of the solar wind electric field into the magnetosphere/ionosphere system. Geophysical Research Letters, 30 ( 4 ), 1158. https://doi.org/10.1029/2002GL016321
dc.identifier.citedreferenceKelley, M. C., Vlasov, M. N., Foster, J. C., & Coster, A. J. ( 2004 ). A quantitative explanation for the phenomenon known as storm-enhanced density. Geophysical Research Letters, 31 ( 19 ), L19809. https://doi.org/10.1029/2004GL020875
dc.identifier.citedreferenceKikuchi, T., Hashimoto, K. K., & Nozaki, K. ( 2008 ). Penetration of magnetospheric electric fields to the equator during a geomagnetic storm. Journal of Geophysical Research, 113 ( A6 ), A06214. https://doi.org/10.1029/2007JA012628
dc.identifier.citedreferenceKil, H. ( 2015 ). The morphology of equatorial plasma bubbles–A review. Journal of Astronomy and Space Sciences, 32 ( 1 ), 13 – 19. https://doi.org/10.5140/JASS.2015.32.1.13
dc.identifier.citedreferenceKil, H., Heelis, R. A., Paxton, L. J., & Oh, S.-J. ( 2009 ). Formation of a plasma depletion shell in the equatorial ionosphere. Journal of Geophysical Research, 114 ( A11 ), A11302. https://doi.org/10.1029/2009JA014369
dc.identifier.citedreferenceKil, H., Miller, E. S., Jee, G., Kwak, Y.-S., Zhang, Y., & Nishioka, M. ( 2016 ). Comment on “The night when the auroral and equatorial ionospheres converged” by Martinis, C., J. Baumgardner, M. Mendillo, J. Wroten, A. Coster, and L. Paxton. Journal of Geophysical Research: Space Physics, 121 ( 10 ), 10599 – 10607. https://doi.org/10.1002/2016JA022662
dc.identifier.citedreferenceKil, H., Paxton, L. J., Su, S.-Y., Zhang, Y., & Yeh, H. ( 2006 ). Characteristics of the storm-induced big bubbles (SIBBs). Journal of Geophysical Research, 111 ( A10 ), A10308. https://doi.org/10.1029/2006JA011743
dc.identifier.citedreferenceKyoto world data center for Geomagnetism. ( 2023 ). Geomagnetic data [Dataset]. http://wdc.kugi.kyoto-u.ac.jp/
dc.identifier.citedreferenceLi, G., Ning, B., Wang, C., Abdu, M. A., Otsuka, Y., Yamamoto, M., et al. ( 2018 ). Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120°E/60°W on 7-8 September 2017. Journal of Geophysical Research: Space Physics, 123 ( 9 ), 7985 – 7998. https://doi.org/10.1029/2018JA025871
dc.identifier.citedreferenceLiu, J., Wang, W., Burns, A., Solomon, S. C., Zhang, S., Zhang, Y., & Huang, C. ( 2016 ). Relative importance of horizontal and vertical transports to the formation of ionospheric storm-enhanced density and polar tongue of ionization. Journal of Geophysical Research: Space Physics, 121 ( 8 ), 8121 – 8133. https://doi.org/10.1002/2016JA022882
dc.identifier.citedreferenceMa, G., & Maruyama, T. ( 2006 ). A super bubble detected by dense GPS network at east Asian longitudes. Geophysical Research Letters, 33 ( 21 ), L21103. https://doi.org/10.1029/2006GL027512
dc.identifier.citedreferenceMadrigal distributed data system. ( 2023 ). Data from the CEDAR Madrigal database [Dataset]. http://cedar.openmadrigal.org/
dc.identifier.citedreferenceMakela, J. J. ( 2006 ). A review of imaging low-latitude ionospheric irregularity processes. Journal of Atmospheric and Solar-Terrestrial Physics, 68 ( 13 ), 1441 – 1458. https://doi.org/10.1016/j.jastp.2005.04.014
dc.identifier.citedreferenceMakela, J. J., & Kelley, M. C. ( 2003 ). Field-aligned 777.4-nm composite airglow images of equatorial plasma depletions. Geophysical Research Letters, 30 ( 8 ), 1442. https://doi.org/10.1029/2003GL017106
dc.identifier.citedreferenceMartinis, C., Baumgardner, J., Mendillo, M., Wroten, J., Coster, A., & Paxton, L. ( 2015 ). The night when the auroral and equatorial ionospheres converged. Journal of Geophysical Research: Space Physics, 120 ( 9 ), 8085 – 8095. https://doi.org/10.1002/2015JA021555
dc.identifier.citedreferenceMartinis, C., Eccles, J. V., Baumgardner, J., Manzano, J., & Mendillo, M. ( 2003 ). Latitude dependence of zonal plasma drifts obtained from dual-site airglow observations. Journal of Geophysical Research, 108 ( A3 ), 1129. https://doi.org/10.1029/2002JA009462
dc.identifier.citedreferenceMendillo, M. ( 2006 ). Storms in the ionosphere: Patterns and processes for total electron content. Reviews of Geophysics, 44 ( 4 ), RG4001. https://doi.org/10.1029/2005RG000193
dc.identifier.citedreferenceMendillo, M., Baumgardner, J., Nottingham, D., Aarons, J., Reinisch, B., Scali, J., & Kelley, M. ( 1997 ). Investigations of thermospheric-ionospheric dynamics with 6300-Å images from the Arecibo Observatory. Journal of Geophysical Research, 102 ( A4 ), 7331 – 7344. https://doi.org/10.1029/96JA02786
dc.identifier.citedreferenceMendillo, M., Zesta, E., Shodhan, S., Sultan, P. J., Doe, R., Sahai, Y., & Baumgardner, J. ( 2005 ). Observations and modeling of the coupled latitude-altitude patterns of equatorial plasma depletions. Journal of Geophysical Research, 110 ( A9 ), A09303. https://doi.org/10.1029/2005JA011157
dc.identifier.citedreferenceMrak, S., Semeter, J., Nishimura, Y., Rodrigues, F. S., Coster, A. J., & Groves, K. ( 2020 ). Leveraging geodetic GPS receivers for ionospheric scintillation science. Radio Science, 55 ( 11 ), e2020RS007131. https://doi.org/10.1029/2020RS007131
dc.identifier.citedreferenceNASA/GSFC’s Space Physics Data Facility’s OMNIWeb service. ( 2023 ). Solar wind and geophysical parameters data [Dataset]. https://cdaweb.gsfc.nasa.gov/
dc.identifier.citedreferenceNishimura, Y., Mrak, S., Semeter, J. L., Coster, A. J., Jayachandran, P. T., Groves, K. M., et al. ( 2021 ). Evolution of mid-latitude density irregularities and scintillation in North America during the 7–8 September 2017 storm. Journal of Geophysical Research: Space Physics, 126 ( 6 ), e29192. https://doi.org/10.1029/2021JA029192
dc.identifier.citedreferenceObana, Y., Maruyama, N., Shinbori, A., Hashimoto, K. K., Fedrizzi, M., Nosé, M., et al. ( 2019 ). Response of the ionosphere-plasmasphere coupling to the September 2017 storm: What erodes the plasmasphere so severely? Space Weather, 17 ( 6 ), 861 – 876. https://doi.org/10.1029/2019SW002168
dc.identifier.citedreferenceOtsuka, Y., Shiokawa, K., Ogawa, T., & Wilkinson, P. ( 2002 ). Geomagnetic conjugate observations of equatorial airglow depletions. Geophysical Research Letters, 29 ( 15 ), 1753. https://doi.org/10.1029/2002GL015347
dc.working.doiNOen
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.