Show simple item record

Repairing Trust in Robots?: A Meta-analysis of HRI Trust Repair Studies with A No-Repair Condition

dc.contributor.authorEsterwood, Connor
dc.contributor.authorRobert, Lionel + "Jr"
dc.date.accessioned2025-01-02T20:36:35Z
dc.date.available2025-01-02T20:36:35Z
dc.date.issued2025-01-02
dc.identifier.citationEsterwood, C. and Robert, L. P. (2025). Repairing Trust in Robots?: A Meta-Analysis of HRI Trust Repair Studies with No Repair Condition, Proceedings of the 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI 2025), March 4-6, 2025, Melbourne, Australia.en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/195990en
dc.description.abstractAs robots become more integrated into various sectors, understanding human–robot interaction (HRI) dynamics, particularly trust repair, is crucial for successful collaboration. For this paper, the authors conducted a meta-analysis of 22 HRI trust repair studies with 3,763 participants to evaluate the effectiveness of strategies for restoring trust after breaches relative to offering no repair. The analysis identified three key findings: (1) strategies are differentially effective, showing limited success in restoring trustworthiness; (2) the overall impact on repairing trust is marginal, with a small effect size; and (3) apologies and explanations are the most effective strategies for trust repair. These insights enrich HRI literature by providing a comprehensive evaluation of trust repair mechanisms, offering valuable guidance for future research and practical improvements in human–robot collaboration.en_US
dc.language.isoen_USen_US
dc.publisherHRI 2025en_US
dc.subjectHuman–Robot Interactionen_US
dc.subjecthuman-robot workforceen_US
dc.subjecthuman-robot trust repairen_US
dc.subjectrobot trust repairen_US
dc.subjecttrust repairen_US
dc.subjectapologiesen_US
dc.subjectpromisesen_US
dc.subjectrestoring trusten_US
dc.subjectRobot explanationsen_US
dc.subjectHRI literature reviewen_US
dc.subjectHRI trust repairen_US
dc.subjectTrust Management and Recovery in HRIen_US
dc.subjecthuman–robot collaborationen_US
dc.subjectHuman–Robot Trusten_US
dc.subjectHuman–Robot Trustworthinessen_US
dc.subjectMachine Trust Repairsen_US
dc.subjectStructural Mechanisms to Support Trust Repairen_US
dc.subjectRepairs on Trustworthinessen_US
dc.subjectTrustworthiness Repairen_US
dc.titleRepairing Trust in Robots?: A Meta-analysis of HRI Trust Repair Studies with A No-Repair Conditionen_US
dc.typeConference Paperen_US
dc.subject.hlbsecondlevelInformation Science
dc.subject.hlbtoplevelSocial Sciences
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumInformation, School ofen_US
dc.contributor.affiliationumRobotics Departmenten_US
dc.contributor.affiliationumCollege of Engineeringen_US
dc.contributor.affiliationumcampusAnn Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/195990/1/EsterwoodandRobert2025HRI.pdf
dc.identifier.doihttps://dx.doi.org/10.7302/24926
dc.identifier.sourceProceedings of the 20th ACM/IEEE International Conference on Human-Robot Interaction (HRI 2025)en_US
dc.identifier.orcid0000-0002-1410-2601en_US
dc.description.filedescriptionDescription of EsterwoodandRobert2025HRI.pdf : Final Preprint
dc.description.depositorSELFen_US
dc.identifier.name-orcidRobert, Lionel P.; 0000-0002-1410-2601en_US
dc.working.doi10.7302/24926en_US
dc.owningcollnameInformation, School of (SI)


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.