A functional null mutation of SCN1B in a patient with Dravet syndrome
dc.contributor.author | Patino, GA | |
dc.contributor.author | Claes, LRF | |
dc.contributor.author | Lopez-Santiago, LF | |
dc.contributor.author | Slat, EA | |
dc.contributor.author | Dondeti, RSR | |
dc.contributor.author | Chen, C | |
dc.contributor.author | O'Malley, HA | |
dc.contributor.author | Gray, CBB | |
dc.contributor.author | Miyazaki, H | |
dc.contributor.author | Nukina, N | |
dc.contributor.author | Oyama, F | |
dc.contributor.author | De Jonghe, P | |
dc.contributor.author | Isom, LL | |
dc.coverage.spatial | United States | |
dc.date.accessioned | 2025-04-29T16:34:34Z | |
dc.date.available | 2025-04-29T16:34:34Z | |
dc.date.issued | 2009-08-26 | |
dc.identifier.issn | 0270-6474 | |
dc.identifier.issn | 1529-2401 | |
dc.identifier.uri | https://www.ncbi.nlm.nih.gov/pubmed/19710327 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/196943 | en |
dc.description.abstract | Dravet syndrome (also called severe myoclonic epilepsy of infancy) is one of the most severe forms of childhood epilepsy. Most patients have heterozygous mutations in SCN1A, encoding voltage-gated sodium channel Nav1.1 αsubunits. Sodium channels are modulated by β1 subunits, encoded by SCN1B, a gene also linked to epilepsy. Here we report the first patient with Dravet syndrome associated with a recessive mutation in SCN1B (p.R125C). Biochemical characterization of p.R125C in a heterologous system demonstrated little to no cell surface expression despite normal total cellular expression. This occurred regardless of coexpression of Nav1.1 αsubunits. Because the patient was homozygous for the mutation, these data suggest a functional SCN1B null phenotype. To understand the consequences of the lack of β1 cell surface expression in vivo, hippocampal slice recordings were performed in Scn1b-/-versus Scn1b+/+mice. Scn1b -/-CA3 neurons fired evoked action potentials with a significantly higher peak voltage and significantly greater amplitude compared with wild type. However, in contrast to the Scn1a+/- model of Dravet syndrome, we found no measurable differences in sodium current density in acutely dissociated CA3 hippocampal neurons. Whereas Scn1b-/-mice seize spontaneously, the seizure susceptibility of Scn1b+/-mice was similar to wild type, suggesting that, like the parents of this patient, one functional SCN1B allele is sufficient for normal control of electrical excitability. We conclude that SCN1B p.R125C is an autosomal recessive cause of Dravet syndrome through functional gene inactivation. Copyright © 2009 Society for Neuroscience. | |
dc.format.medium | ||
dc.language | eng | |
dc.publisher | Society for Neuroscience | |
dc.rights | Licence for published version: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.subject | Animals | |
dc.subject | Arginine | |
dc.subject | Biophysics | |
dc.subject | Cell Line, Transformed | |
dc.subject | Cysteine | |
dc.subject | DNA Mutational Analysis | |
dc.subject | Disease Models, Animal | |
dc.subject | Electric Stimulation | |
dc.subject | Epilepsies, Myoclonic | |
dc.subject | Female | |
dc.subject | Green Fluorescent Proteins | |
dc.subject | Hippocampus | |
dc.subject | Humans | |
dc.subject | In Vitro Techniques | |
dc.subject | Infant | |
dc.subject | Male | |
dc.subject | Mice | |
dc.subject | Mice, Inbred C57BL | |
dc.subject | Mice, Knockout | |
dc.subject | Models, Molecular | |
dc.subject | NAV1.1 Voltage-Gated Sodium Channel | |
dc.subject | Nerve Tissue Proteins | |
dc.subject | Oocytes | |
dc.subject | Polymorphism, Single Nucleotide | |
dc.subject | Sodium Channels | |
dc.subject | Temperature | |
dc.subject | Transfection | |
dc.subject | Twins | |
dc.subject | Voltage-Gated Sodium Channel beta-1 Subunit | |
dc.subject | Xenopus laevis | |
dc.title | A functional null mutation of SCN1B in a patient with Dravet syndrome | |
dc.type | Article | |
dc.identifier.pmid | 19710327 | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/196943/2/A functional null mutation of SCN1B in a patient with Dravet syndrome.pdf | |
dc.identifier.doi | 10.1523/JNEUROSCI.2475-09.2009 | |
dc.identifier.doi | https://dx.doi.org/10.7302/25441 | |
dc.identifier.source | Journal of Neuroscience | |
dc.description.version | Published version | |
dc.date.updated | 2025-04-29T16:34:33Z | |
dc.identifier.orcid | 0000-0001-6471-4529 | |
dc.identifier.orcid | 0000-0003-0204-7841 | |
dc.identifier.orcid | 0000-0002-9479-6729 | |
dc.identifier.volume | 29 | |
dc.identifier.issue | 34 | |
dc.identifier.startpage | 10764 | |
dc.identifier.endpage | 10778 | |
dc.identifier.name-orcid | Patino, GA | |
dc.identifier.name-orcid | Claes, LRF | |
dc.identifier.name-orcid | Lopez-Santiago, LF; 0000-0001-6471-4529 | |
dc.identifier.name-orcid | Slat, EA | |
dc.identifier.name-orcid | Dondeti, RSR | |
dc.identifier.name-orcid | Chen, C | |
dc.identifier.name-orcid | O'Malley, HA; 0000-0003-0204-7841 | |
dc.identifier.name-orcid | Gray, CBB | |
dc.identifier.name-orcid | Miyazaki, H | |
dc.identifier.name-orcid | Nukina, N | |
dc.identifier.name-orcid | Oyama, F | |
dc.identifier.name-orcid | De Jonghe, P | |
dc.identifier.name-orcid | Isom, LL; 0000-0002-9479-6729 | |
dc.working.doi | 10.7302/25441 | en |
dc.owningcollname | Michigan Research Experts Deposits |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.