Show simple item record

Intuitionistic propositional logic is polynomial-space complete

dc.contributor.authorStatman, Richarden_US
dc.date.accessioned2006-04-07T17:33:52Z
dc.date.available2006-04-07T17:33:52Z
dc.date.issued1979-07en_US
dc.identifier.citationStatman, Richard (1979/07)."Intuitionistic propositional logic is polynomial-space complete." Theoretical Computer Science 9(1): 67-72. <http://hdl.handle.net/2027.42/23534>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6V1G-45FC46N-46/2/3b7ec37fdcfe223bfdf2156f099a3cecen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/23534
dc.description.abstractIt is the purpose of this note to show that the question of whether a given propositional formula is intuitionistically valid (in Brouwer's sense, in Kripke's sense, or just provable by Heyting's rules, see Kreisel [7]) is p-space complete (see Stockmeyer [14]). 1. (a) There is a simple (i.e. polynomial time) translation of intuitionistic propositional logic into classical propositional logic if and only if NP = p-space.2. (b) The problem of determining if a type of the typed [lambda]-calculus is the type of a closed [lambda]-term is p-space complete (this will be discussed below).3. (c) There is a polynomial bounded intuitionistic proof system if and only if NP = p-space (see Cook and Reckhow [2]).en_US
dc.format.extent544688 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleIntuitionistic propositional logic is polynomial-space completeen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Philosophy, The University of Michigan, Ann Arbor, MI 48109, U.S.A.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/23534/1/0000493.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0304-3975(79)90006-9en_US
dc.identifier.sourceTheoretical Computer Scienceen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.