Show simple item record

An infinite-dimensional classical integrable system and the Heisenberg and Schrodinger representations

dc.contributor.authorBloch, Anthony M.en_US
dc.date.accessioned2006-04-07T19:28:42Z
dc.date.available2006-04-07T19:28:42Z
dc.date.issued1986-07-07en_US
dc.identifier.citationBloch, Anthony M. (1986/07/07)."An infinite-dimensional classical integrable system and the Heisenberg and Schrodinger representations." Physics Letters A 116(8): 353-355. <http://hdl.handle.net/2027.42/26105>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6TVM-46R3K6J-R8/2/4b117dc8e8a5f45811f82f7f109909dben_US
dc.identifier.urihttps://hdl.handle.net/2027.42/26105
dc.description.abstractWe present an infinite-dimensional classical integrable hamiltonian system on projective Hilbert space. We show that the equations of motion correspond to the Heisenberg ones of quantum mechanics when the hamiltonian operator is compact, and that the formulation of these equations as a classical Lax pair with parameter gives rise naturally to an infinite set of conversation laws. Further, an infinite-dimensional version of Moser's transformation for integrating classical systems is shown to relate the Heisenberg and Schrodinger pictures.en_US
dc.format.extent169091 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleAn infinite-dimensional classical integrable system and the Heisenberg and Schrodinger representationsen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, The University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/26105/1/0000181.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0375-9601(86)90054-Xen_US
dc.identifier.sourcePhysics Letters Aen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.