A note on Iwasawa invariants and the main conjecture
dc.contributor.author | Federer, Leslie Jane | en_US |
dc.date.accessioned | 2006-04-07T19:37:37Z | |
dc.date.available | 2006-04-07T19:37:37Z | |
dc.date.issued | 1986-09 | en_US |
dc.identifier.citation | Federer, Leslie Jane (1986/09)."A note on Iwasawa invariants and the main conjecture." Journal of Number Theory 24(1): 107-113. <http://hdl.handle.net/2027.42/26353> | en_US |
dc.identifier.uri | http://www.sciencedirect.com/science/article/B6WKD-4CRP436-98/2/113da8ff48d9ba0beeeefac7d2edce5e | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/26353 | |
dc.description.abstract | We fix a rational prime p, possibly 2, and a CM field K. Let AK[infinity]- denote the minus component of the p-primary class group of K[infinity], the basic p-extension of K. The Pontryagin dual (AK[infinity]-)p is a noetherian, torsion p[[T]]-module whose characteristic polynomial we denote by f(T). Iwasawa's Main Conjecture relates the algebraically defined f(T) to an analytically defined power series F(T) given by a p-adic L-function. Using the analytic class number formula, we give evidence for it based on the Iwasawa invariants of f(T) and F(T). I would like to thank Benedict H. Gross for suggesting this approach. | en_US |
dc.format.extent | 237625 bytes | |
dc.format.extent | 3118 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.language.iso | en_US | |
dc.publisher | Elsevier | en_US |
dc.title | A note on Iwasawa invariants and the main conjecture | en_US |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | en_US |
dc.subject.hlbsecondlevel | Mathematics | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USA | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/26353/1/0000440.pdf | en_US |
dc.identifier.doi | http://dx.doi.org/10.1016/0022-314X(86)90062-4 | en_US |
dc.identifier.source | Journal of Number Theory | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.