Show simple item record

A note on Iwasawa invariants and the main conjecture

dc.contributor.authorFederer, Leslie Janeen_US
dc.date.accessioned2006-04-07T19:37:37Z
dc.date.available2006-04-07T19:37:37Z
dc.date.issued1986-09en_US
dc.identifier.citationFederer, Leslie Jane (1986/09)."A note on Iwasawa invariants and the main conjecture." Journal of Number Theory 24(1): 107-113. <http://hdl.handle.net/2027.42/26353>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6WKD-4CRP436-98/2/113da8ff48d9ba0beeeefac7d2edce5een_US
dc.identifier.urihttps://hdl.handle.net/2027.42/26353
dc.description.abstractWe fix a rational prime p, possibly 2, and a CM field K. Let AK[infinity]- denote the minus component of the p-primary class group of K[infinity], the basic p-extension of K. The Pontryagin dual (AK[infinity]-)p is a noetherian, torsion p[[T]]-module whose characteristic polynomial we denote by f(T). Iwasawa's Main Conjecture relates the algebraically defined f(T) to an analytically defined power series F(T) given by a p-adic L-function. Using the analytic class number formula, we give evidence for it based on the Iwasawa invariants of f(T) and F(T). I would like to thank Benedict H. Gross for suggesting this approach.en_US
dc.format.extent237625 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleA note on Iwasawa invariants and the main conjectureen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Mathematics, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/26353/1/0000440.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0022-314X(86)90062-4en_US
dc.identifier.sourceJournal of Number Theoryen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.