Show simple item record

Exciton Dynamics in thin wires

dc.contributor.authorKopelman, Raoulen_US
dc.contributor.authorLi, Lien_US
dc.contributor.authorParus, Stephan J.en_US
dc.contributor.authorPrasad, Jagdishen_US
dc.date.accessioned2006-04-07T19:44:57Z
dc.date.available2006-04-07T19:44:57Z
dc.date.issued1987-12-01en_US
dc.identifier.citationKopelman, Raoul, Li, Li, Parus, Stephan J., Prasad, Jagdish (1987/12/01)."Exciton Dynamics in thin wires." Journal of Luminescence 38(1-6): 289-294. <http://hdl.handle.net/2027.42/26481>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6TJH-46D5FBV-38/2/cfc65176e5b2eb5395366bc29cf00953en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/26481
dc.description.abstractWhen are molecular wires thin enough to show one-dimensional exciton kinetics? What are the characteristics of one-dimensional kinetics? What applications are there? Cylindrical naphthalene wires (5-5000 nanometer radius) show a definite one-to three-dimensional transition (about 25 nm for triplet excitons at 4 K; 40 nm at 77k). Nuclear channel pore membranes (polycarbonate) serve as templates and calibrators. Monte Carlo simulations on finite-width wires are consistent with the experiments. Vycor glass pores are effectively one-dimensional. A new experimental criterion is based on excitation pulse width. It gives both topological and stochastic information (i.e. dimensionality and hopping rate). Its applicability to ultrathin wires and porous glass is demonstrated via simulations and experiments. The triplet exciton migrat (multiple hopping) length is 50-2-100 molecules for all samples.en_US
dc.format.extent577530 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleExciton Dynamics in thin wiresen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelNuclear Engineering and Radiological Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/26481/1/0000017.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0022-2313(87)90132-3en_US
dc.identifier.sourceJournal of Luminescenceen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.