Show simple item record

OLS or GLS in the presence of specification error? : An expected loss approach

dc.contributor.authorThursby, Jerry G.en_US
dc.date.accessioned2006-04-07T19:51:49Z
dc.date.available2006-04-07T19:51:49Z
dc.date.issued1987-07en_US
dc.identifier.citationThursby, Jerry G. (1987/07)."OLS or GLS in the presence of specification error? : An expected loss approach." Journal of Econometrics 35(2-3): 359-374. <http://hdl.handle.net/2027.42/26665>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6VC0-4599K70-C/2/4754c83d7565463d65ddfa84a51ee2c0en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/26665
dc.description.abstractOmitted variables in regression analysis can lead to the erroneous conclusion that autocorrelation or heteroscedasticity is present. The common response is to use the suggested GLS procedure, even if it is suspected that the error is a non-zero disturbance mean. The question addressed here is whether one is better off with the GLS or with the OLS estimator when the omitted portion of the regression cannot be incorporated into the regression. Using a loss function this paper relates the seriousness of OLS and GLS loss to identifiable parameters. With consistent estimators of these parameters the researcher can choose between OLS and GLS.en_US
dc.format.extent950001 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleOLS or GLS in the presence of specification error? : An expected loss approachen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelStatistics and Numeric Dataen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbsecondlevelEconomicsen_US
dc.subject.hlbtoplevelSocial Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelBusinessen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumOhio State University, Columbus, OH 43210, USA; University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/26665/1/0000209.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0304-4076(87)90033-9en_US
dc.identifier.sourceJournal of Econometricsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.