Show simple item record

C=O stretch mode splitting in the formic acid dimer: Electrostatic models of the intermonomer interaction

dc.contributor.authorDybal, J.en_US
dc.contributor.authorCheam, T. C.en_US
dc.contributor.authorKrimm, Samuelen_US
dc.date.accessioned2006-04-07T19:52:42Z
dc.date.available2006-04-07T19:52:42Z
dc.date.issued1987-06en_US
dc.identifier.citationDybal, J., Cheam, T. C., Krimm, S. (1987/06)."C=O stretch mode splitting in the formic acid dimer: Electrostatic models of the intermonomer interaction." Journal of Molecular Structure 159(1-2): 183-194. <http://hdl.handle.net/2027.42/26690>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6TGS-44F7542-J/2/4d883cf38ecfe77cb3c71d71af6fe173en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/26690
dc.description.abstractThe physical origin of the large (74 cm-1) splitting between the symmetric (Ag) and antisymmetric (Bu) components of the C=O stretch mode in the formic acid dimer has previously been attributed to tautomerism effects, transition dipole--dipole coupling, or dynamical charge transfer through the hydrogen bonds. We show that an electrostatic model involving atomic charge--charge interactions can account for a splitting of 56 cm-1, provided the atomic partial charges are allowed to vary in magnitude during vibrational motion. The charges and charge derivatives have been obtained from ab initio Hartree--Fock calculations up to the 6-31G** level. An additional 13 cm-1 of the remaining discrepancy in the splitting of 69 cm-1, compared to the observed value of 74 cm-1.en_US
dc.format.extent594189 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleC=O stretch mode splitting in the formic acid dimer: Electrostatic models of the intermonomer interactionen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumBiophysics Research Division, and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 U.S.A.en_US
dc.contributor.affiliationumBiophysics Research Division, and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 U.S.A.en_US
dc.contributor.affiliationumBiophysics Research Division, and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 U.S.A.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/26690/1/0000237.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0022-2860(87)85016-0en_US
dc.identifier.sourceJournal of Molecular Structureen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.