Show simple item record

Bimolecular reaction A + B --> 0 at steady state on fractals: Anomalous rate law and reactant self-organization

dc.contributor.authorClement, E.en_US
dc.contributor.authorKopelman, Raoulen_US
dc.contributor.authorSander, Leonard M.en_US
dc.date.accessioned2006-04-10T13:36:12Z
dc.date.available2006-04-10T13:36:12Z
dc.date.issued1990-10-01en_US
dc.identifier.citationClement, E., Kopelman, R., Sander, L. M. (1990/10/01)."Bimolecular reaction A + B --&gt; 0 at steady state on fractals: Anomalous rate law and reactant self-organization." Chemical Physics 146(3): 343-350. <http://hdl.handle.net/2027.42/28374>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6TFM-44FNDDK-2D/2/d5edb9faa2f4173c94f17bd56d7badcben_US
dc.identifier.urihttps://hdl.handle.net/2027.42/28374
dc.description.abstractThis paper is a theoretical investigation of the diffusion limited reaction A + B --&gt; 0 at steady state and on fractal structures. We propose an extension of a scheme previously applied to Euclidean spaces, using the so-called fractal diffusion operator defined by O'Shaughnessy and Procaccia. We show that for a particular type of source, we obtain distributions of reactants and macroscopic reaction laws that interpolate the results previously found in Euclidean dimensions. More specifically, we show that the relevant dimension of the problem is the spectral dimension ds and for ds &lt; 2 we have a mesoscopic segregation in the medium that may imply anomalous orders of reaction. Some of the predictions are tested via Monte Carlo simulations. More generally, we find that these results can be viewed as examples of a more general property common to other elementary diffusion limited bimolecular reactions.en_US
dc.format.extent598607 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleBimolecular reaction A + B --&#62; 0 at steady state on fractals: Anomalous rate law and reactant self-organizationen_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelPhysicsen_US
dc.subject.hlbsecondlevelMathematicsen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.en_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Physics, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/28374/1/0000139.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/0301-0104(90)80054-2en_US
dc.identifier.sourceChemical Physicsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.