Show simple item record

Heat capacity and thermodynamic properties of synthetic heazlewoodite, Ni3S2, and of the high-temperature phase Ni3±xS2

dc.contributor.authorStølen, Sveinen_US
dc.contributor.authorGrønvold, Fredriken_US
dc.contributor.authorWestrum, Jr. , Edgar F.en_US
dc.contributor.authorKolonin, German R.en_US
dc.date.accessioned2006-04-10T14:51:35Z
dc.date.available2006-04-10T14:51:35Z
dc.date.issued1991-01en_US
dc.identifier.citationSt&#x00f8;len, Svein, Gr&#x00f8;nvold, Fredrik, Westrum, Jr., Edgar F., Kolonin, German R. (1991/01)."Heat capacity and thermodynamic properties of synthetic heazlewoodite, Ni3S2, and of the high-temperature phase Ni3&#x00b1;xS2." The Journal of Chemical Thermodynamics 23(1): 77-93. <http://hdl.handle.net/2027.42/29536>en_US
dc.identifier.urihttp://www.sciencedirect.com/science/article/B6WHM-4H2FSTV-C/2/e2e0a1b426e46be47a8710c76632e63ben_US
dc.identifier.urihttps://hdl.handle.net/2027.42/29536
dc.description.abstractThe heat capacity of synthetic heazlewoodite (Ni3S2) was measured over the temperature range 5 K to 350 K by equilibrium adiabatic calorimetry and compared with earlier results. High-temperature results on this phase and on (two-phase) Ni2.9S2 were obtained through the transition regions and up to about 1000 K. In addition to comparing the post-(834 K)-transitional heat capacity with that of fast ionic conductors it is discussed phenomenologically with Helmholtz-energy modelling for the phase transformation. Thermodynamic functions have been evaluated and selected values are, for R = 8.3144 J&#x00b7;K-1&#x00b7;mol-1:en_US
dc.format.extent860199 bytes
dc.format.extent3118 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.language.isoen_US
dc.publisherElsevieren_US
dc.titleHeat capacity and thermodynamic properties of synthetic heazlewoodite, Ni3S2, and of the high-temperature phase Ni3±xS2en_US
dc.typeArticleen_US
dc.rights.robotsIndexNoFollowen_US
dc.subject.hlbsecondlevelMaterials Science and Engineeringen_US
dc.subject.hlbsecondlevelChemistryen_US
dc.subject.hlbsecondlevelChemical Engineeringen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelEngineeringen_US
dc.subject.hlbtoplevelScienceen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Chemistry, University of Michigan, Ann Arbor, MI 48109, U.S.A.en_US
dc.contributor.affiliationotherDepartment of Chemistry, University of Oslo, 0315 Oslo 3, Blindern, Norwayen_US
dc.contributor.affiliationotherDepartment of Chemistry, University of Oslo, 0315 Oslo 3, Blindern, Norwayen_US
dc.contributor.affiliationotherInstitute of Geology & Geophysics, Siberian Branch of the USSR Academy of Sciences, 630090, Novosibirsk 90, U.S.S.R.en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/29536/1/0000624.pdfen_US
dc.identifier.doihttp://dx.doi.org/10.1016/S0021-9614(05)80061-8en_US
dc.identifier.sourceThe Journal of Chemical Thermodynamicsen_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.